This paper faces the problem of optimizing the wiring and the connections in a tactile skin for robots. The robotic skin is a device composed of a network of tactile sensors, whose wiring can be very complex: the control of this complexity is a key problem. In the considered robotic skin, skin elements are grouped into skin patches, which output tactile data that have to be read by a micro-controller. The logical connections between the sensors must be defined in order to route signals through the network. A finite set of micro-controllers is given and a set of constraints is imposed on the given assignment and routing. The considered problem has a combinatorial nature and it can be formulated as a Minimum Constrained Spanning Forest problem with costs on arcs that cannot be a priori defined as they are solution-dependent. The problem is NP-hard. The paper introduces a mathematical formulation and then proposes a Multi-Start Heuristic algorithm and an Ant Colony Optimization approach whose effectiveness is evaluated through experimental tests performed on both real and synthetically generated instances.
Heuristic approaches for the optimal wiring in large scale robotic skin design
ANGHINOLFI, DAVIDE;CANNATA, GIORGIO;MASTROGIOVANNI, FULVIO;NATTERO, CRISTIANO;PAOLUCCI, MASSIMO
2012-01-01
Abstract
This paper faces the problem of optimizing the wiring and the connections in a tactile skin for robots. The robotic skin is a device composed of a network of tactile sensors, whose wiring can be very complex: the control of this complexity is a key problem. In the considered robotic skin, skin elements are grouped into skin patches, which output tactile data that have to be read by a micro-controller. The logical connections between the sensors must be defined in order to route signals through the network. A finite set of micro-controllers is given and a set of constraints is imposed on the given assignment and routing. The considered problem has a combinatorial nature and it can be formulated as a Minimum Constrained Spanning Forest problem with costs on arcs that cannot be a priori defined as they are solution-dependent. The problem is NP-hard. The paper introduces a mathematical formulation and then proposes a Multi-Start Heuristic algorithm and an Ant Colony Optimization approach whose effectiveness is evaluated through experimental tests performed on both real and synthetically generated instances.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.