The role of MR Arterial-Spin-Labeling Cerebral Blood Flow maps (ASL-CBF) in the assessment of pediatric focal epilepsy is still debated. We aim to compare the Seizure Onset Zone (SOZ) detection rate of three methods of evaluation of ASL-CBF: 1) qualitative visual (qCBF), 2) z-score voxel-based quantitative analysis of index of asymmetry (AI-CBF), and 3) z-score voxel-based cluster analysis of the quantitative difference of patient's CBF from the normative data of an age-matched healthy population (cCBF). Interictal ASL-CBF were acquired in 65 pediatric patients with focal epilepsy: 26 with focal brain lesions and 39 with a normal MRI. All hypoperfusion areas visible in at least 3 contiguous images of qCBF analysis were identified. In the quantitative evaluations, clusters with a significant z-score AI-CBF <= -1.64 and areas with a z-score cCBF <= -1.64 were considered potentially related to the SOZ. These areas were compared with the SOZ defined by the anatomo-electro-clinical data. In patients with a positive MRI, SOZ was correctly identified in 27% of patients using qCBF, 73% using AI-CBF, and 77% using cCBF. In negative MRI patients, SOZ was identified in 18% of patients using qCBF, in 46% using AI-CBF, and in 64% using cCBF (p < 0.001). Quantitative analyses of ASL-CBF maps increase the detection rate of SOZ compared to the qualitative method, principally in negative MRI patients.
Comparison of Qualitative and Quantitative Analyses of MR-Arterial Spin Labeling Perfusion Data for the Assessment of Pediatric Patients with Focal Epilepsies
Tortora, Domenico;Cataldi, Matteo;Consales, Alessandro;Pacetti, Mattia;Sertorio, Fiammetta;Cognolato, Erica;Nobile, Giulia;Mancardi, Margherita;Siri, Laura;Giacomini, Thea;Striano, Pasquale;Arnaldi, Dario;Rossi, Andrea;Nobili, Lino
2022-01-01
Abstract
The role of MR Arterial-Spin-Labeling Cerebral Blood Flow maps (ASL-CBF) in the assessment of pediatric focal epilepsy is still debated. We aim to compare the Seizure Onset Zone (SOZ) detection rate of three methods of evaluation of ASL-CBF: 1) qualitative visual (qCBF), 2) z-score voxel-based quantitative analysis of index of asymmetry (AI-CBF), and 3) z-score voxel-based cluster analysis of the quantitative difference of patient's CBF from the normative data of an age-matched healthy population (cCBF). Interictal ASL-CBF were acquired in 65 pediatric patients with focal epilepsy: 26 with focal brain lesions and 39 with a normal MRI. All hypoperfusion areas visible in at least 3 contiguous images of qCBF analysis were identified. In the quantitative evaluations, clusters with a significant z-score AI-CBF <= -1.64 and areas with a z-score cCBF <= -1.64 were considered potentially related to the SOZ. These areas were compared with the SOZ defined by the anatomo-electro-clinical data. In patients with a positive MRI, SOZ was correctly identified in 27% of patients using qCBF, 73% using AI-CBF, and 77% using cCBF. In negative MRI patients, SOZ was identified in 18% of patients using qCBF, in 46% using AI-CBF, and in 64% using cCBF (p < 0.001). Quantitative analyses of ASL-CBF maps increase the detection rate of SOZ compared to the qualitative method, principally in negative MRI patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.