The paper presents the third version of the hybrid leg-wheel ground mobile robot Mantis, a small-scale platform designed for inspection and surveillance tasks. The locomotion system is based on the cooperating action of a couple of actuated front legs and wheels, along with a passive rear carriage. The system performs wheeled locomotion on even grounds and hybrid locomotion in case of terrain irregularities or obstacles. This architecture combines high speed, energy efficiency, maneuverability and stable camera vision on flat terrains with good motion capabilities in unstructured environments. In the embodiment design presented hereafter, referred to as Mantis 3.0, the rear carriage has been equipped with four passive wheels, instead of two as in the previous versions, in order to improve the stability during steep stair climbing maneuvers; moreover, the legs, the main body and the rear carriage have been significantly redesigned in order to be realized by additive manufacturing techniques, with the final aim of obtaining a low-cost device suitable for Open Source distribution.
Additive Manufacturing-Oriented Redesign of Mantis 3.0 Hybrid Robot
Luca Bruzzone;Pietro Fanghella;Giovanni Berselli;Pietro Bilancia
2019-01-01
Abstract
The paper presents the third version of the hybrid leg-wheel ground mobile robot Mantis, a small-scale platform designed for inspection and surveillance tasks. The locomotion system is based on the cooperating action of a couple of actuated front legs and wheels, along with a passive rear carriage. The system performs wheeled locomotion on even grounds and hybrid locomotion in case of terrain irregularities or obstacles. This architecture combines high speed, energy efficiency, maneuverability and stable camera vision on flat terrains with good motion capabilities in unstructured environments. In the embodiment design presented hereafter, referred to as Mantis 3.0, the rear carriage has been equipped with four passive wheels, instead of two as in the previous versions, in order to improve the stability during steep stair climbing maneuvers; moreover, the legs, the main body and the rear carriage have been significantly redesigned in order to be realized by additive manufacturing techniques, with the final aim of obtaining a low-cost device suitable for Open Source distribution.File | Dimensione | Formato | |
---|---|---|---|
B2019_4.pdf
accesso chiuso
Tipologia:
Documento in Post-print
Dimensione
2.84 MB
Formato
Adobe PDF
|
2.84 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.