Introduction PBX1 encodes the pre-B cell leukemia factor 1, a Three Amino acid Loop Extension (TALE) transcription factor crucial to regulate basic developmental processes. PBX1 loss-of-function variants have been initially described in association with renal malformations in both isolated and syndromic forms. Case report Herein, we report a male infant presenting multiple organ malformations (cleidosternal dysostosis, micrognathia, left lung hypoplasia, wide interatrial defect, pulmonary hypertension, total anomalous pulmonary venous return, intestinal malrotation) and carrying the heterozygous de novo c.868C > T (p.Arg290Trp) variant in PBX1. This novel variant affects the highly conserved homeodomain of the protein, leading to a non-conservative substitution and consequently altering its tridimensional structure and DNA-binding capacity. Conclusion So far, PBX1 has been reported in association with a broad spectrum of renal anomalies. However, given the role of this gene in many different developing processes, whole-exome sequencing can detect mutations in PBX1 even in patients with different phenotypes, not necessarily involving the renal primordium. This report presents a novel PBX1 variant with a predicted strong deleterious effect. The mutation leads to a non-conservative substitution in a very highly conserved domain of the protein, thus altering its tertiary structure and DNA-binding capacity.

An example of parenchymal renal sparing in the context of complex malformations due to a novel mutation in the PBX1 gene

Federica Ruscitti;Maria Cerminara;Ferruccio Romano;Giuseppe Martucciello;Renata Bocciardi;Aldamaria Puliti;
2022-01-01

Abstract

Introduction PBX1 encodes the pre-B cell leukemia factor 1, a Three Amino acid Loop Extension (TALE) transcription factor crucial to regulate basic developmental processes. PBX1 loss-of-function variants have been initially described in association with renal malformations in both isolated and syndromic forms. Case report Herein, we report a male infant presenting multiple organ malformations (cleidosternal dysostosis, micrognathia, left lung hypoplasia, wide interatrial defect, pulmonary hypertension, total anomalous pulmonary venous return, intestinal malrotation) and carrying the heterozygous de novo c.868C > T (p.Arg290Trp) variant in PBX1. This novel variant affects the highly conserved homeodomain of the protein, leading to a non-conservative substitution and consequently altering its tridimensional structure and DNA-binding capacity. Conclusion So far, PBX1 has been reported in association with a broad spectrum of renal anomalies. However, given the role of this gene in many different developing processes, whole-exome sequencing can detect mutations in PBX1 even in patients with different phenotypes, not necessarily involving the renal primordium. This report presents a novel PBX1 variant with a predicted strong deleterious effect. The mutation leads to a non-conservative substitution in a very highly conserved domain of the protein, thus altering its tertiary structure and DNA-binding capacity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1090286
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact