Proofs and countermodels are the two sides of completeness proofs, but, in general, failure to find one does not automatically give the other. The limitation is encountered also for decidable non-classical logics in traditional completeness proofs based on Henkin's method of maximal consistent sets of formulas. A method is presented that makes it possible to establish completeness in a direct way: For any given sequent either a proof in the given logical system or a countermodel in the corresponding frame class is found. The method is a synthesis of a generation of calculi with internalized relational semantics, a Tait-Schütte-Takeuti style completeness proof, and procedures to finitize the countermodel construction. Finitizations for intuitionistic propositional logic are obtained through the search for a minimal derivation, through pruning of infinite branches in search trees by means of a suitable syntactic counterpart of semantic filtration, or through a proof-theoretic embedding into an appropriate provability logic. A number of examples illustrates the method, its subtleties, challenges, and present scope. © 2014 Springer Basel.

Proofs and Countermodels in Non-Classical Logics

Negri S.
2014-01-01

Abstract

Proofs and countermodels are the two sides of completeness proofs, but, in general, failure to find one does not automatically give the other. The limitation is encountered also for decidable non-classical logics in traditional completeness proofs based on Henkin's method of maximal consistent sets of formulas. A method is presented that makes it possible to establish completeness in a direct way: For any given sequent either a proof in the given logical system or a countermodel in the corresponding frame class is found. The method is a synthesis of a generation of calculi with internalized relational semantics, a Tait-Schütte-Takeuti style completeness proof, and procedures to finitize the countermodel construction. Finitizations for intuitionistic propositional logic are obtained through the search for a minimal derivation, through pruning of infinite branches in search trees by means of a suitable syntactic counterpart of semantic filtration, or through a proof-theoretic embedding into an appropriate provability logic. A number of examples illustrates the method, its subtleties, challenges, and present scope. © 2014 Springer Basel.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/995806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? ND
social impact