In this article we give the asymptotic growth of the number of connected components of the moduli space of surfaces of general type corresponding to certain families of Beauville surfaces with group either PSL(2, p), or an alternating group, or a symmetric group or an abelian group. We moreover extend these results to regular surfaces isogenous to a higher product of curves. © 2014 Copyright Taylor and Francis Group, LLC.

Beauville Surfaces, Moduli Spaces and Finite Groups

PENEGINI, MATTEO
2014-01-01

Abstract

In this article we give the asymptotic growth of the number of connected components of the moduli space of surfaces of general type corresponding to certain families of Beauville surfaces with group either PSL(2, p), or an alternating group, or a symmetric group or an abelian group. We moreover extend these results to regular surfaces isogenous to a higher product of curves. © 2014 Copyright Taylor and Francis Group, LLC.
File in questo prodotto:
File Dimensione Formato  
1107.5534.pdf

accesso aperto

Descrizione: Pre-print arXiv:1107.5534 [math.AG]
Tipologia: Documento in versione editoriale
Dimensione 300.27 kB
Formato Adobe PDF
300.27 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/846459
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 7
social impact