
ar
X

iv
:1

10
7.

55
34

v1
  [

m
at

h.
A

G
] 

 2
7 

Ju
l 2

01
1

BEAUVILLE SURFACES, MODULI SPACES AND FINITE

GROUPS

SHELLY GARION, MATTEO PENEGINI

Abstract. In this paper we give the asymptotic growth of the number
of connected components of the moduli space of surfaces of general type
corresponding to certain families of Beauville surfaces with group either
PSL(2, p), or an alternating group, or a symmetric group or an abelian
group. We moreover extend these results to regular surfaces isogenous
to a higher product of curves.

1. Introduction

1.1. Beauville surfaces and surfaces isogenous to a higher product.

A surface S is isogenous to a higher product of curves if it is a quotient
(C1 × C2)/G, where C1 and C2 are curves of genus at least two, and G is a
finite group acting freely on C1 × C2.

In [Cat00] it has been proved that any surface isogenous to a higher
product has a unique minimal realization as a quotient (C1 ×C2)/G, where
G is a finite group acting freely and with the property that no element acts
trivially on one of the two factors Ci. We shall then work only with minimal
realizations.

We have two cases: the mixed case where the action of G exchanges the
two factors (and then C1 and C2 are isomorphic), and the unmixed case
where G acts diagonally on their product.

We shall use the standard notation in surface theory. We denote by
pg := h0(S,Ω2

S) the geometric genus of S, q := h0(S,Ω1
S) the irregularity of

S, χ(S) = 1 + pg − q the holomorphic Euler-Poincaré characteristic, e(S)
the topological Euler number, and K2

S the self-intersection of the canonical
divisor (see e.g. [B]).

A surface S isogenous to a higher product is in particular a minimal
surface of general type and the numerical invariants of S are related by the
following formulae

(1) K2
S = 8χ(S) and e(S) = 4χ(S),

by [Cat00, Theorem 3.4]. Moreover, by [Cat00], the irregularity of these
surfaces is computed by

(2) q(S) = g(C1/G) + g(C2/G).

By the above formula (2), a surface S isogenous to a higher product of
curves has q(S) = 0 if and only if the two quotients Ci/G are isomorphic
to P

1. Moreover if both coverings Ci → Ci/G ∼= P
1 are ramified in exactly
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3 points we call S a Beauville surface. This last condition is equivalent to
saying that Beauville surfaces are rigid, i.e. have no nontrivial deformations.

Beauville surfaces were introduced by Catanese in [Cat00], inspired by a
construction of Beauville (see [B]) After this inspiring paper the interest in
Beauville surfaces has been enormously increased, see for example [BCG05,
BCG06, FG, FGJ, FJ, FMP, GLL, GP, GJT, GM].

In this paper we shall deal only with regular (i.e., with q = 0) surfaces
isogenous to a product of unmixed type, clearly the Beauville surfaces are
among them.

Working out the definition of surfaces isogenous to a product one sees that
there is a pure group theoretical condition which characterizes the groups of
such surfaces: the existence of a so-called ”ramification structure” (see the
discussion in Section 2).

Definition 1.1. Let G be a finite group and r ≥ 3 an integer.

• An r−tuple T = (x1, . . . , xr) of elements of G is called a spherical
r−system of generators of G if 〈x1, . . . , xr〉 = G and x1 · . . . ·xr = 1.

• We say that T is of type τ = (m1, . . . ,mr) if the orders of (x1, . . . , xr)
are respectively (m1, . . . ,mr).

• Moreover, two spherical ri−systems T1 = (x1, . . . , xr1) and T2 =
(x1, . . . , xr2) are said to be disjoint, if:

(3) Σ(T1)
⋂

Σ(T2) = {1},

where

Σ(Ti) :=
⋃

g∈G

∞
⋃

j=0

ri
⋃

k=1

g · xji,k · g
−1.

Definition 1.2. Let 3 ≤ r1, r2 ∈ N and let τ1 = (m1,1, . . . ,m1,r1), τ2 =
(m2,1, . . . ,m2,r2) be two sequences of natural numbers such that mi,k ≥ 2.

A (spherical-) unmixed ramification structure of type (τ1, τ2) and size
(r1, r2) for a finite group G, is a pair (T1, T2) of disjoint spherical systems
of generators of G, whose types are (τ1, τ2).

An unmixed Beauville structure is an unmixed ramification structure with
r1 = r2 = 3.

Definition 1.3. A triple (r, s, t) ∈ N
3 is said to be hyperbolic if

1

r
+

1

s
+

1

t
< 1.

1.2. Moduli spaces of surfaces. By a celebrated Theorem of Gieseker
(see [G]), once the two invariants of a minimal surface S of general type,
the self-intersection of the canonical divisor y := K2

S and the holomorphic
Euler-Poincaré characteristic x := χ(S), are fixed, then there exists a coarse
quasiprojective moduli space My,x of minimal smooth complex surfaces of
general type with these invariants. This space consists of a finite number
of connected components which can have different dimensions, see [Cat84].
The union M over all admissible pairs of invariants (y, x) of these spaces is
called the moduli space of surfaces of general type.
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If S is a smooth minimal surface of general type, which is also regular, we
denote by M(S) the subvariety of My,x, corresponding to surfaces (orient-
edly) homeomorphic to S. Moreover we shall denote by M0

y,x the subspace
of the moduli space corresponding to regular surfaces.

It is known that the number of connected components δ(y, x) of M0
y,x

is bounded from above by a function in y, more precisely it follows from

[Cat92] that δ(y, x) ≤ cy77y
2

, where c is a positive constant. Hence, the
number of components has an exponential upper bound in K2.

There are also some results regarding the lower bound. In [Man], for
example, a sequence Sn of simply connected surfaces of general type was
constructed, such that the lower bound for the number of the connected
components δ(Sn) of M(Sn) is given by

δ(Sn) ≥ y
1

5
logyn

n .

1.3. The results. The motivation of this paper is to show that using pure
group theoretical methods we are able to give the asymptotic growth of the
number of connected components of the moduli space of surfaces of general
type relative to certain sequences of surfaces. More precisely, we exploit
the definition and properties of regular surfaces isogenous to a product of
curves and in particular, Beauville surfaces, to reduce the geometric problem
of computing the number of connected components into the algebraic one of
counting orbits of some group actions, which can be effectively computed.

In [Cat00], Catanese studied the moduli space of surfaces isogenous to a
higher product of curves (see [Cat00, Theorem 4.14]). As a result, he obtains
that the moduli space of regular surfaces isogenous to a higher product
with fixed invariants: a finite group G and types (τ1, τ2), consists of a finite
number of connected components ofM. We remark here that since Beauville
surfaces are rigid, a Beauville surface yields an isolated point in the moduli
space. A group theoretical method to count the number of these components
was given in [BC]. Using this method, we deduce the following Theorems,
in which we use the following standard notations.

Notation 1.4. Denote:

• h(n) = O(g(n)), if h(n) ≤ cg(n) for some constant c > 0, as n→ ∞.
• h(n) = Ω(g(n)), if h(n) ≥ cg(n) for some constant c > 0, as n→ ∞.
• h(n) = Θ(g(n)), if c1g(n) ≤ h(n) ≤ c2g(n) for some constants
c1, c2 > 0, as n→ ∞.

We shall first consider alternating and symmetric groups.

Theorem 1.5. Let τ1 = (m1,1, . . . ,m1,r1) and τ2 = (m2,1, . . . ,m2,r2) be two
sequences of natural numbers such that mi,k ≥ 2 and

∑ri
k=1(1− 1/mi,k) > 2

for i = 1, 2. Let h(An; τ1, τ2) be the number of connected components of
the moduli space of surfaces isogenous to a product with q = 0, with the
alternating group An, and with type (τ1, τ2). Then

(a) h(An; τ1, τ2) = Ω(nr1+r2),

and moreover,

(b) h(An; τ1, τ2) = Ω
((

log(χ)
)r1+r2−ǫ).
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where 0 < ǫ ∈ R.

Theorem 1.6. Let τ1 = (m1,1, . . . ,m1,r1) and τ2 = (m2,1, . . . ,m2,r2) be two
sequences of natural numbers such that mi,k ≥ 2, at least two of (mi,1, . . . ,mi,ri)
are even and

∑ri
k=1(1 − 1/mi,k) > 2, for i = 1, 2. Let h(Sn; τ1, τ2) be the

number of connected components of the moduli space of surfaces isogenous
to a product with q = 0, with the symmetric group Sn, and with type (τ1, τ2).
Then

(a) h(Sn; τ1, τ2) = Ω(nr1+r2),

and moreover,

(b) h(Sn; τ1, τ2) = Ω
((

log(χ)
)r1+r2−ǫ).

where 0 < ǫ ∈ R.

The proofs of part (a) of both Theorems are presented in Section 3.2,
and are based on results of Liebeck and Shalev [LS]. The proofs of part (b)
of both Theorems appear in Section 2.2. In the special case of Beauville
surfaces we immediately deduce the following.

Corollary 1.7. Let τ1 = (r1, s1, t1) and τ2 = (r2, s2, t2) be two hyperbolic
types and let h(An; τ1, τ2) be the number of Beauville surfaces with the alter-
nating group An and with types (τ1, τ2). Then

(a) h(An; τ1, τ2) = Ω(n6),

and moreover,

(b) h(An; τ1, τ2) = Ω
((

log(χ)
)6−ǫ)

.

where 0 < ǫ ∈ R.

Corollary 1.8. Let τ1 = (r1, s1, t1) and τ2 = (r2, s2, t2) be two hyperbolic
types, assume that at least two of (r1, s1, t1) are even and at least two of
(r2, s2, t2) are even, and let h(Sn; τ1, τ2) be the number of Beauville surfaces
with the symmetric group Sn and with types (τ1, τ2). Then

(a) h(Sn; τ1, τ2) = Ω(n6),

and moreover,

(b) h(Sn, τ1, τ2) = Ω
((

log(χ)
)6−ǫ)

.

where 0 < ǫ ∈ R.

For the group PSL(2, p) we obtain the following.

Theorem 1.9. Let τ1 and τ2 be two hyperbolic triples, let p be an odd prime,
and consider the group PSL(2, p). Let h(PSL(2, p); τ1, τ2) be the number of
Beauville surfaces with group PSL(2, p) and with types (τ1, τ2). Then there
exists a constant c = c(τ1, τ2), which depends only on the types and not on
p, such that

h(PSL(2, p); τ1, τ2) ≤ c.

The proof of this Theorem is presented in Section 3.3 (see also Remark
2.13).

The following is a natural generalization of the results of [BCG05] regard-
ing abelian groups.
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Theorem 1.10. Let {Sp} be the family of surfaces isogenous to a product
with q = 0 and with group Gp := (Z/pZ)r admitting a ramification structure
of type τp = (p, . . . , p) (p appears (r + 1)−times) where p is prime. If we
denote by h(Gp; τp, τp) the number of connected components of the moduli
space of isomorphism classes of surfaces isogenous to a product with q = 0
admitting these data, then

h(Gp; τp, τp) = Θ(χr(Sp)).

Therefore, there exist families of surfaces such that the degree of the
polynomial h in χ (and so in K2) can be arbitrarily large. The proof of this
Theorem appears in Section 2.2. In the special case of Beauville surfaces we
immediately deduce the following.

Corollary 1.11. Let {Sp} be the family of Beauville surfaces with Gp :=
(Z/pZ)2 admitting a ramification structure of type τp = (p, p, p) where p ≥ 5
is prime. If we denote by h(Gp; τp, τp) the number of Beauville surfaces
admitting these data, then

h(Gp; τp, τp) = Θ(χ2(Sp)).
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2. From Geometry to Group Theory and Back

2.1. Ramification structures and Hurwitz components. The study
of surfaces isogenous to a higher product is strictly linked to the study of
branched coverings of complex curves. We shall recall Riemann’s existence
theorem which translates the geometric problem of constructing branch cov-
erings into a group theoretical problem.

Definition 2.1. Let g′,m1, . . . ,mr be positive integers. An orbifold surface
group of type (g′ | m1, . . . ,mr) is a group presented as follows:

Γ(g′ | m1, . . . ,mr) := 〈a1, b1, . . . , ag′ , bg′ , c1, . . . , cr|

cm1

1 = · · · = cmr
r =

g′
∏

k=1

[ak, bk]c1 · . . . · cr = 1〉.

If g′ = 0 it is called a polygonal group, if g′ = 0 and r = 3 it is called a
triangle group.
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We remark that an orbifold surface group is in particular cases a Fuchsian
group (see e.g. [Br] and [LS]).

The following is a reformulation of Riemann’s existence theorem:

Theorem 2.2. A finite group G acts as a group of automorphisms on some
compact Riemann surface C of genus g if and only if there are natural num-
bers g′,m1, . . . ,mr, and an orbifold homomorphism

(4) θ : Γ(g′ | m1, . . . ,mr) → G

such that ord(θ(ci)) = mi ∀i and such that the Riemann - Hurwitz relation
holds:

(5) 2g − 2 = |G|

(

2g′ − 2 +

r
∑

i=1

(

1−
1

mi

)

)

.

If this is the case, then g′ is the genus of C ′ := C/G. The G-cover
C → C ′ is branched in r points p1, . . . , pr with branching indicesm1, . . . ,mr,
respectively.

We obtain that the datum of a surface isogenous to a higher product of
unmixed type S = (C1 × C2)/G with q = 0 is determined, once we look
at the monodromy of each covering of P1, by the datum of a finite group
G together with two respective disjoint spherical ri−systems of generators
T1 := (x1, . . . , xr1) and T2 := (x1, . . . , xr2), such that the types of the sys-
tems satisfy (5) with g′ = 0 and respectively g = g(Ci). The condition of
being disjoint ensures that the action of G on the product of the two curves
C1 × C2 is free. We remark here that this can be specialized to ri = 3, and
therefore can be used to construct Beauville surfaces. This description gives
at once the Definition 1.2.

Remark 2.3. Note that a group G and an unmixed ramification structure
(or equivalently a Beauville structure) for it determine the main invariants
of the surface S. Indeed, as a consequence of the Zeuthen-Segre formula one
has:

(6) e(S) = 4
(g(C1)− 1)(g(C2)− 1)

|G|
.

Hence, by (1) and (5) we obtain:
(7)

4χ(S) = 4(1+pg) = |G| ·

(

−2 +

r1
∑

k=1

(1−
1

m1,k
))

)

·

(

−2 +

r2
∑

k=1

(1−
1

m2,k
))

)

,

and so, in the Beauville case,

4χ(S) = 4(1 + pg) = |G|(1 − µ1)(1− µ2),

where

(8) µi :=
1

mi,1
+

1

mi,2
+

1

mi,3
, (i = 1, 2).

Now, it is left to verify that indeed g(C1) ≥ 2 and g(C2) ≥ 2. This follows
from Equation (5) and from the following Lemma.
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Lemma 2.4. Let G be a finite non-trivial group and (T1, T2) a spherical
unmixed ramification structure of G of size (r1, r2), then

(9) Z ∋
|G|(−2 +

∑ri
l=1(1−

1
mi,l

))

2
+ 1 ≥ 2, for i = 1, 2.

The fact that the number in (9) is an integer follows from Riemann’s
existence theorem. We need to prove that this integer is at least 2, namely
that

∑ri
l=1(1−

1
mi,l

) > 2 for i = 1, 2. We shall give two proofs for this fact, a

geometric one and a group theoretic one (in Section 3.4.4), both are based
on results of Bauer, Catanese and Grunewald.

Geometrical proof. Let S = (C1×C2)/G be a surface isogenous to a product
with q(S) = 0, notice first that g(C1) 6= 1.

Indeed, suppose that g(C1) = 1, then S → C2/G ∼= P
1 is an elliptic

fibration with fibre isomorphic to C1 or to a multiple of C1. Since C1 is an
elliptic curve, the Zeuthen-Segre Theorem holds in the following form:

e(S) = 4
(

g(C1)− 1
)(

g(C2/G) − 1
)

= 0.

Since S is isogenous to a product 4χ(S) = e(S) = 0, but we have χ(S) =
1 + pg − q = 1 + pg > 0. Hence g(C1) 6= 1.

Second, suppose that S is a P
1-bundle. Then S cannot be non-rational,

because non-rational ruled surfaces have q > 0. Hence S must be rational.
If S is rational then pg = 0, and surfaces with pg = q = 0 isogenous to a
product were classified by Bauer-Catanese-Grunewald in [BCG08], and the
only rational one is S = P

1 × P
1, therefore G is trivial and this case is also

excluded. �

Let S be a surface isogenous to a higher product of unmixed type with
q = 0, and with group G and a pair of two disjoint spherical ri−systems
of generators of types (τ1, τ2). By (7) we have χ(S) = χ(G, (τ1, τ2)), and
consequentially, by (1), K2

S = K2(G, (τ1, τ2)) = 8χ(S).
Let us fix a group G and a pair of unmixed ramification types (τ1, τ2),

and denote by M(G,(τ1,τ2)) the moduli space of isomorphism classes of sur-
faces isogenous to a product admitting these data, by [Cat00] the space
M(G,(τ1,τ2)) consists of a finite number of connected components. Indeed,
there is a group theoretical procedure to count these components, which is
described in [BC].

Definition 2.5. The braid group of the sphere Br := π0(Diff(P
1−{p1, . . . , pr}))

operates on the epimorphism θ defined in (4):

π1(P
1 − {p1, . . . , pr})/〈γ

m1 , . . . , γmr〉 ∼= Γ := Γ(0 | m1, . . . ,mr)
θ

−→ G.

Indeed, if σ ∈ Br then the operation is given by θ ◦ σ. The orbits of this
action are called Hurwitz equivalence classes of the spherical systems of
generators.

Definition 2.6. Let G be a finite group, let r ≥ 3 and 2 ≤ m1 ≤ m2 ≤
· · · ≤ mr be integers. Assume that T = (x1, . . . , xr) is a spherical r−system
of generators of G.
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• We say that T has an unordered type τ if the orders of (x1, . . . , xr)
are (m1, . . . ,mr) up to a permutation, namely, if there is a permu-
tation π ∈ Sr such that

ord(x1) = mπ(1), . . . , ord(xr) = mπ(r).

• We shall denote:

S(G, τ) := {spherical r−systems for G of type τ}.

Notation 2.7. Let (T1, T2) be a pair of disjoint spherical ri−systems of
generators of type (τ1, τ2), we call the pair (T1, T2) unordered if T1 and T2
have unordered types τ1 and τ2 respectively.

We shall denote by U(G; τ1, τ2) the set of all unordered pairs (T1, T2) of
disjoint spherical ri−systems of generators of type (τ1, τ2).

Theorem 2.8. [BC, Theorem 1.3]. Let S be a surface isogenous to a higher
product of unmixed type and with q = 0. Then to S we attach its finite group
G (up to isomorphism) and the equivalence classes of an unordered pair of
disjoint spherical systems of generators (T1, T2) of G, under the equivalence
relation generated by:

(i) Hurwitz equivalence for T1;
(ii) Hurwitz equivalence for T2;
(iii) Simultaneous conjugation for T1 and T2, i.e., for φ ∈ Aut(G) we let

(

T1 := (x1,1, . . . , xr1,1), T2 := (x1,2, . . . , xr2,2)
)

be equivalent to
(

φ(T1) := (φ(x1,1), . . . , φ(xr1,1)), φ(T2) := (φ(x1,2), . . . , φ(xr2,2))
)

.

Then two surfaces S, S′ are deformation equivalent if and only if the cor-
responding equivalence classes of pairs of spherical generating systems of G
are the same.

Recall that

Lemma 2.9. [V, Lemma 9.4]. The inner automorphism group, Inn(G),
leaves each braid orbit invariant.

This Lemma allows us to use the above Theorem of Bauer and Catanese
also for non-abelian groups, although the original statement was given only
for abelian groups.

Once we fix a finite group G and a pair of types (τ1, τ2) (of size (r1,r2))
of an unmixed ramification structure for G, counting the number of con-
nected components of M(G,(τ1,τ2)) is then equivalent to the group theoretical
problem of counting the number of classes of pairs of spherical systems of
generators of G of type (τ1, τ2) under the equivalence relation given in the
following definition (see e.g. [BCG08, §1.1]).

Definition 2.10. Denote by h(G; τ1, τ2) the number of Hurwitz compo-
nents, namely the number of orbits of U(G; τ1, τ2) under the following ac-
tions:

if τ1 6= τ2: the action of (Br1 ×Br2)×Aut(G), given by:

((γ1, γ2), φ) · (T1, T2) :=
(

φ(γ1(T1)), φ(γ2(T2))
)

,

where γ1 ∈ Br1 , γ2 ∈ Br2 , φ ∈ Aut(G) and (T1, T2) ∈ U(G; τ1, τ2).
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if τ1 = τ2: the action of (Br ≀ Z/2Z) × Aut(G), where Z/2Z acts on
(T1, T2) by exchanging the two factors.

In case of Beauville surfaces we define h as above substituting r1 and r2
with 3.

2.2. Counting connected components in the moduli space. In this
Section we prove Theorems 1.5(b), 1.6(b) and 1.10. We start by proving a
more general statement regarding families of finite groups.

Proposition 2.11. Fix r1 and r2 in N. Let {Gn}
∞
n=1 be a family of finite

groups, which admit an unmixed ramification structure of size (r1, r2). Let
τn,1 = (mn,1,1, . . . ,mn,1,r1) and τn,2 = (mn,2,1, . . . ,mn,2,r2) be sequences of
types (τn,1, τn,2) of unmixed ramification structures for Gn, and {Sn}

∞
n=1 be

the family of surfaces isogenous to higher product with q = 0 admitting the

given data, then as |Gn|
n→∞
−→ ∞ :

(i) χ(Sn) = Θ(|Gn|).
(ii) h(Gn; τn,1, τn,2) = O(χ(Sn)

r1+r2−2).

Proof. (i) Note that, for i = 1, 2,

1

42
≤ −2 +

ri
∑

j=1

(

1−
1

mn,i,j

)

≤ ri − 2.

Indeed, for ri = 3, the minimal value for (1−µi) is 1/42. For ri = 4,
the minimal value for

(

−2 +
∑ri

j=1

(

1 − 1
mn,i,j

))

is 1/6, and when

ri ≥ 5, this value is at least 1/2.
Now, by Equation (7),

4χ(Sn) = |Gn| ·



−2 +

r1
∑

j=1

(

1−
1

mn,1,j

)



 ·



−2 +

r2
∑

j=1

(

1−
1

mn,2,j

)



 ,

hence
|Gn|

4 · 422
≤ χ(Sn) ≤

(r1 − 2)(r2 − 2)|Gn|

4
.

(ii) For i = 1, 2, any spherical ri−system of generators Tn,i contains at
most ri− 1 independent elements of Gn. Thus, the size of the set of
all unordered pairs of type (τn,1, τn,2) is bounded from above, by

|U(Gn; τn,1, τn,2)| ≤ |Gn|
r1+r2−2,

and so, the number of connected components is bounded from above
by

h(Gn; τn,1, τn,2) ≤ |Gn|
r1+r2−2.

Now, the result follows from (i).
�

By taking r1 = r3 = 3 we get the following Corollary.

Corollary 2.12. Let {Gn}
∞
n=1 be a family of finite groups, which admit an

unmixed Beauville structure. Let τn,1 = (mn,1,1,mn,1,2,mn,1,3) and τn,2 =
(mn,2,1,mn,2,2,mn,2,3) be sequences of types (τn,1, τn,2) of unmixed Beauville
structures for Gn, and let {Sn}

∞
n=1 be the family of Beauville surfaces ad-

mitting the given data, then as |Gn|
n→∞
−→ ∞ :
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(i) χ(Sn) = Θ(|Gn|).
(ii) h(Gn; τn,1, τn,2) = O(χ(Sn)

4).

With the calculation done in this paper we can give a more accurate
description of the asymptotic growth of h in case of Beauville surfaces and
surfaces isogenous to a higher product with q = 0, for certain families of
finite groups.

Remark 2.13. Let τ1 = (r, r, r) and τ2 = (s, s, s) be two hyperbolic types,
where r and s are two distinct primes which are strictly larger than 5. By
[GP], there exist infinitely many primes p for which the group PSL(2, p)
admits an unmixed Beauville structure of type (τ1, τ2).

Let us consider the corresponding Beauville surfaces Sp, then by Propo-
sition 2.11, as p→ ∞:

χ(Sp) = Θ(p3),

while, by Theorem 1.9 we have

h(PSL(2, p), τ1, τ2) < c,

where c = c(τ1, τ2) is a constant which depends only on the types and not
on p. Namely, there exists an infinite family of surfaces for which h remains
bounded while χ grows to infinity.

On the other hand, when considering the groups An and Sn one obtains
the following lower bound.

Proof of Theorem 1.5(b) and 1.6(b). Let {Sn} be a family of surfaces isoge-
nous to a higher product with q = 0, with group either An or Sn, and τ1
and τ2 are two types which satisfy the assumptions of the Theorems. Then
by Proposition 2.11, as n→ ∞:

χ(Sn) = Θ(n!),

while, by Theorems 1.5(a) and 1.6(a),

h(An, τ1, τ2) = Ω(nr1+r2), and

h(Sn, τ1, τ2) = Ω(nr1+r2).

Therefore,

h(An, τ1, τ2) = Ω
((

log(χ(Sn))
)r1+r2−ǫ) and

h(Sn, τ1, τ2) = Ω
((

log(χ(Sn))
)r1+r2−ǫ).

where 0 < ǫ ∈ R. �

For abelian groups one can moreover obtain both a lower and an upper
bound.

Proof of Theorem 1.10. Consider the family {Sp} of surfaces isogenous to a
higher product with q = 0, where p is prime, admitting type τp = (p, . . . , p)
(p appears (r + 1)−times) and group Gp := (Z/pZ)r, then by Proposition
2.11, we have as p→ ∞:

χ(Sp) = Θ(pr),

while by Proposition 3.26,

h(Gp; τp, τp) = Θ(pr
2

).
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Therefore,

h(Gp; τp, τp) = Θ(χr(Sp)).

�

3. Finite Groups, Ramification Structures and Hurwitz

Components

3.1. Braid group actions. Recall that the braid group Br on r strands
can be presented as

Br = 〈σ1, . . . , σr−1|σiσi+1σi = σi+1σiσi+1, σiσj = σjσi if |i− j| ≥ 2〉.

The action of Br on the set of spherical r−systems of generators for G
of unordered type τ = (m1, . . . ,mr), which was given in Definition 2.5, is
given by

σi : (x1, . . . , xi, . . . , xr) → (x1, . . . , xi−1, xixi+1x
−1
i , xi, xi+2 . . . , xr),

for i = 1, . . . , r − 1.
There is also a natural action of Aut(G) given by

φ(x1, . . . , xr) = (φ(x1), . . . , φ(xr)), φ ∈ Aut(G).

Since the two actions of Br and Aut(G) commute, one gets a double
action of Br × Aut(G) on the set of spherical r−systems of generators for
G of an unordered type τ = (m1, . . . ,mr).

Let x ∈ G and denote by C = xAut(G) the Aut(G)−equivalence class of x.
Since all the elements in C have the same order, we may define ord(C) :=
ord(x).

Let C = (C1, . . . , Cr) be a set of Aut(G)-equivalence classes. Denote

N(C) := {(x1, . . . , xr) ∈ Gr : x1 · . . . · xr = 1, 〈x1, . . . , xr〉 = G and

there is a permutation π ∈ Sr with xπ(i) ∈ Ci for all i}.

We say that C has type τ = (m1, . . . ,mr) if N(C) 6= ∅ and ord(Ci) = mi

(for i = 1, . . . , r). C has an unordered type τ if N(C) 6= ∅ and the orders of
C1, . . . , Cr are m1, . . . ,mr up to a permutation. We denote

N(τ) = {C = (C1, . . . , Cr) : C has an unordered type τ}.

Observe that the action of Br preserves the set N(C), since it preserves
the conjugacy classes, and hence the Aut(G)−equivalence classes, of the ele-
ments in a spherical r−system of generators of G. It is clear that the action
of Aut(G) also preserves the set N(C). The following Lemma immediately
follows.

Lemma 3.1. Let τ1 and τ2 be two types, then

h(G; τ1, τ2) ≥ #{Ci,Dj : Ci = (Ci,1, . . . , Ci,r1) and Dj = (Dj,1, . . . ,Dj,r2),

where Ci ∈ N(τ1) for all i, Dj ∈ N(τ2) for all j, and

the Aut(G)− classes {Ci,k}i,k and {Dj,l}j,l are all distinct}.
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One can moreover restrict the action of Aut(G) to the action of Inn(G) ∼=
G, which is given by

g : (x1, . . . , xr) 7→ (gx1g
−1, . . . , gxrg

−1), g ∈ G.

Denote by OGT the orbit of T = (x1, . . . , xr) under the action of Inn(G) ∼=
G, and by OBr

T the orbit of T under the action of Br. By Lemma 2.9, the

action of Inn(G) leaves the orbit OB

T invariant, namely,

Lemma 3.2. OGT ⊆ OBr

T .

Hence, we get an induced action of Out(G) = Aut(G)/Inn(G) on the set
of spherical r−systems of generators for G of unordered type τ .

In the special case of B3, the braid group on 3 strands, we show that the
inverse inclusion also holds, and one can therefore deduce a more accurate
bound on the number of orbits.

Let T = (x, y, (xy)−1) be a spherical 3−system of generators for G, and
let

T un := (x, y, (xy)−1) ∪ (y, x, (yx)−1) ∪ (x, (yx)−1, y)

∪ (y, (xy)−1, x) ∪ ((xy)−1, x, y) ∪ ((yx)−1, y, x),

be an unordered spherical 3−system of generators.
Observe that OGTun := {OGT : T ∈ T un}, where

OGT = {(gxg−1, gyg−1, g(xy)−1g−1) : g ∈ G}.

Lemma 3.3. The action of B := B3 preserves OGTun.

Proof. Let (x, y, (xy)−1) be a spherical 3−system for G, then the action of
B := B3 = 〈σ1, σ2〉 is given by:

σ1 : (x, y, y
−1x−1) → (xyx−1, x, y−1x−1) = x(y, x, x−1y−1)x−1 ∈ OG(y,x,(yx)−1),

and

σ2 : (x, y, y
−1x−1) → (x, yy−1x−1y−1, y) = (x, x−1y−1, y) ∈ OG(x,(yx)−1,y).

�

From Lemma 3.2 and Lemma 3.3 we deduce the following orbit equality.

Corollary 3.4. OGTun = OB3

Tun .

Denote by d = d(G; τ) the number of orbits in the set of spherical
3−systems of generators for G of unordered type τ , under the action of
B3. Then by Corollary 3.4,

Corollary 3.5. d(G; τ) = #{OGTun : T ∈ S(G, τ)}.

Now, one can bound the number of Hurwitz components using d(G; τ).

Corollary 3.6. Let τ1 and τ2 be two types, then

d(G; τ1) · d(G; τ2)

2|Out(G)|
≤ h(G; τ1, τ2) ≤ d(G; τ1) · d(G; τ2).

The proof of the Corollary follows from the following Lemma, which sum-
marizes some well-known facts regarding group actions on finite sets.
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Lemma 3.7. Let H and K be groups and let X and Y be finite sets.
If H acts on X and x ∈ X, we denote OHx := {h · x : h ∈ H} the orbit of

x under the action of H and ΩH = ΩXH the set of orbits in X.

(i) If the groups H and K act on a set X, then for every x ∈ X,

|OHx | ≤ |OH×K
x | ≤ |OHx | · |K|.

(ii) If the groups H and K act on a set X, and there is some positive
constant c such that |OHx | ≤ c|OKx | for any x ∈ X, then

|ΩH | ≥
1

c
|ΩK |.

(iii) If the groups H and K act on the sets X and Y respectively, then

|ΩX×Y
H×K | = |ΩXH | · |Ω

Y
K |.

Proof of Corollary 3.6. By Lemma 3.7,

Ω
U(G;τ1,τ2)
(B3×B3)×Aut(G) ≤ Ω

U(G;τ1,τ2)
B3×B3

= d(G; τ1) · d(G; τ2).

On the other direction, by Lemma 3.2, Lemma 3.7 and Definition 2.10, we
have

In case τ1 6= τ2:

Ω
U(G;τ1,τ2)
(B3×B3)×Aut(G) = Ω

U(G;τ1,τ2)
(B3×B3)×Out(G) ≥

Ω
U(G;τ1,τ2)
B3×B3

|Out(G)|
=
d(G; τ1) · d(G; τ2)

|Out(G)|
.

In case τ1 = τ2 = τ :

Ω
U(G;τ,τ)
(B3≀Z/2Z)×Aut(G) = Ω

U(G;τ,τ)
(B3≀Z/2Z)×Out(G) ≥

Ω
U(G;τ,τ)
B3≀Z/2Z

|Out(G)|
=

d(G; τ)2

2|Out(G)|
.

�

3.2. Hurwitz components for An and Sn. In this Section we prove The-
orems 1.5(a) and 1.6(a) regarding alternating and symmetric groups.

The results of Liebeck and Shalev, which are stated below, are applicable
to any Fuchsian group Γ, however, we shall use them only for the case of
orbifold surface groups (see Definition 2.1)

Γ = Γ(g′ | m1, . . . ,mr)

that satisfy the inequality

(10) 2g′ − 2 +

r
∑

i=1

(

1−
1

mi

)

> 0.

Definition 3.8. Let Ci = gSn

i (1 ≤ i ≤ r) be conjugacy classes in Sn,
and let mi be the order of gi. Define sgn(Ci) = sgn(gi), and write C =
(C1, . . . , Cr). Define

HomC(Γ,Sn) = {φ ∈ Hom(Γ,Sn) : φ(xi) ∈ Ci for 1 ≤ i ≤ r}.

Definition 3.9. Conjugacy classes in Sn of cycle-shape (mk), where n =
mk, namely, containing k cycles of length m each, are called homogeneous.
A conjugacy class having cycle-shape (mk, 1f ), namely, containing k cycles
of length m each and f fixed points, with f bounded, is called almost homo-
geneous.
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Theorem 3.10. [LS, Theorem 1.9]. Let Γ be a Fuchsian group, and let Ci
(1 ≤ i ≤ r) be conjugacy classes in Sn with cycle-shapes (mki

i , 1
fi), where

fi < f for some constant f and
∏r
i=1 sgn(Ci) = 1. Set C = (C1, . . . , Cr).

Then the probability that a random homomorphism in HomC(Γ,Sn) has
image containing An tends to 1 as n→ ∞.

Using Theorem 3.10, Liebeck and Shalev deduced the following Corollary
regarding Sn.

Corollary 3.11. [LS, Theorem 1.10]. Let Γ = Γ(−|m1, . . . ,mr) be a polyg-
onal group which satisfies the above inequality (10), and assume that at least
two of m1, . . . ,mr are even. Then Γ surjects to all but finitely many sym-
metric groups Sn.

As consequences of these results we recall the following theorems of [GP].

Theorem 3.12. Let τ1 = (m1,1, . . . ,m1,r1) and τ2 = (m2,1, . . . ,m2,r2) be two
sequences of natural numbers such that mi,k ≥ 2 and

∑ri
k=1(1 − 1/mi,k) >

2 for i = 1, 2. Then almost all alternating groups An admit an unmixed
ramification structure of type (τ1, τ2).

Theorem 3.13. Let τ1 = (m1,1, . . . ,m1,r1) and τ2 = (m2,1, . . . ,m2,r2) be two
sequences of natural numbers such that mi,k ≥ 2, at least two of (mi,1, . . . ,mi,ri)
are even and

∑ri
k=1(1−1/mi,k) > 2, for i = 1, 2. Then almost all symmetric

groups Sn admit an unmixed ramification structure of type (τ1, τ2).

The proofs of the two theorems are based on the following generalization
of the algorithm appearing in [GP].

Algorithm 3.14. Given two sequences of natural numbers τ1 = (m1,1, . . . ,m1,r1)
and τ2 = (m2,1, . . . ,m2,r2), such that mi,k ≥ 2, then one can choose r1 + r2
almost homogeneous conjugacy classes Cm1,1

, . . . , Cm1,r1
, Cm2,1

, . . . , Cm2,r2

in Sn, of orders m1,1, . . . ,m1,r1 ,m2,1, . . . ,m2,r2 respectively, such that they
contain only even permutations, and they all have different numbers of fixed
points.

We can now prove Theorems 1.5(a) and 1.6(a).

Proof of Theorem 1.5(a). Let τ1 = (m1,1, . . . ,m1,r1) and τ2 = (m2,1, . . . ,m2,r2)

be two sequences of natural numbers such that mj,l ≥ 2 and
∑rj

l=1(1 −
1/mj,l) > 2 for j = 1, 2. Let k ∈ N be an arbitrary integer, and assume that
n is large enough. By slightly modifying Algorithm 3.14, we may actually
choose (r1 + r2)k almost homogeneous conjugacy classes in Sn,

{Cm1,1,i, . . . , Cm1,r1
,i, Cm2,1,i, . . . , Cm2,r2

,i}
k
i=1,

which contain even permutations, such that every r1+r2 classes have orders
m1,1, . . . ,m1,r1 ,m2,1, . . . ,m2,r2 respectively, and all the (r1+ r2)k conjugacy
classes have different numbers of fixed points.

Hence, if n is large enough, there are (r1 + r2)k different Sn-conjugacy
classes in An, and moreover, for each 1 ≤ i1, . . . , ir1 , j1, . . . , jr2 ≤ k, the
conjugacy classes (Cm1,1,i1 , . . . , Cm1,r1

,ir1
), (Cm2,1,j1 , . . . , Cm2,r2

,jr2
) contain

an unmixed ramification structure (T1, T2) of type (τ1, τ2), by Theorem 3.10
(see the proof of Theorem 3.12).
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From Lemma 3.1, since Sn = Aut(An) (for n > 6), we deduce that if n is
large enough, then h(An; τ1, τ2) ≥ kr1+r2 . Now, k can be arbitrarily large,
therefore,

h(An; τ1, τ2)
n→∞
−→ ∞.

Moreover, as the number of different almost homogeneous conjugacy classes
in Sn of some certain order grows linearly in n, the proof actually shows
that h = Ω(nr1+r2). �

Similarly, we can show that if τ1 = (m1,1, . . . ,m1,r1) and τ2 = (m2,1, . . . ,m2,r2)
are two sequences of natural numbers such that mi,l ≥ 2, at least two of
(ml,1, . . . ,ml,rl) are even and

∑ri
l=1(1− 1/mi,l) > 2, for i = 1, 2, then

h(Sn; τ1, τ2)
n→∞
−→ ∞,

and moreover, h = Ω(nr1+r2), thus proving Theorem 1.6(a).

3.3. Hurwitz components for PSL(2, p). In this section we prove Theo-
rem 1.9. The proof is based on well-known properties of the group PSL(2, pe)
(see for example [Su]) and on results of Macbeath [Ma].

Let q = pe, where p is an odd prime and e ≥ 1. Recall that GL(2, q) is
the group of invertible 2 × 2 matrices over the finite field with q elements,
which we denote by Fq, and SL(2, q) is the subgroup of GL(2, q) comprising
the matrices with determinant 1. Then PGL(2, q) and PSL(2, q) are the
quotients of GL(2, q) and SL(2, q) by their respective centers. Moreover we
can identify PSL(2, q) with a normal subgroup of index 2 in PGL(2, q).

Since all non-trivial elements in PSL(2, q), whose pre-images in SL(2, q)
have the same trace, are conjugate in PGL(2, q), all of them have the same
order in PSL(2, q). Therefore, we may denote by Ord(α) the order in
PSL(2, q) of the image of a non-trivial matrix A ∈ SL(2, q) whose trace
equals α, and denote, for an integer l,

Tl = {α ∈ Fq : Ord(α) = l}.

Note that since q is odd then α ∈ Tl if and only if −α ∈ Tl.
Now, one can easily compute the size of Tl for any integer l.

Lemma 3.15. Let p be an odd prime and let q = pe. Then in PSL(2, q),

(i) Tp = {±2} and so |Tp| = 2.
(ii) T2 = {0} and so |T2| = 1.

(iii) If r ≥ 3 and r | q±1
2 then |Tr| = φ(r), where φ is the Euler function.

(iv) For other values of r, |Tr| = 0.

This Lemma is immediate, but for the convenience of the reader we shall
present a proof of part (iii).

Proof of Lemma 3.15 (iii). Assume that r | q−1
2 (if r | q+1

2 then the proof
is similar). Let λ be a primitive root of unity of order 2r in Fq, then there
are 2φ(r) diagonal matrices whose images in PSL(2, q) have exact order
r, parametrized by {±λi : 1 ≤ i ≤ 2r, (i, 2r) = 1}, if r is odd, or by
{±λi : 1 ≤ i ≤ r, (i, 2r) = 1}, if r is even. Hence, there are exactly φ(r)
different traces of diagonal matrices of order r, given as {±α1, . . . ,±αψ},

where ψ = φ(r)
2 . �
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In order to estimate the number of Hurwitz components for PSL(2, p), we
would first like to estimate the number d(PSL(2, p); τ) for certain types τ
(see Corollaries 3.5 and 3.6).

Recall that by Corollary 3.5,

d(PSL(2, p); τ) = #{O
PSL(2,p)
Tun : T ∈ S(PSL(2, p), τ)}.

Thus, d(PSL(2, p); τ) = 2d′(PSL(2, p), τ), where

d′(PSL(2, p); τ) := #{O
PGL(2,p)
Tun : T ∈ S(PSL(2, p), τ)}.

One can compute d′(PSL(2, p), τ) using the following Lemma, which fol-
lows from results of Macbeath [Ma].

Lemma 3.16. Let 2 ≤ l ≤ m ≤ n and assume that m > 2 and n > 5. Then

d′(PSL(2, p); (l,m, n)) = #
{

(±α,±β,±γ) : α ∈ Tl, β ∈ Tm, γ ∈ Tn,

and either α2 + β2 + γ2 − αβγ 6= 4 or α2 + β2 + γ2 + αβγ 6= 4
}

.

Proof. Let (α, β, γ) ∈ F
3
p such that α ∈ Tl, β ∈ Tm and γ ∈ Tn. In this case,

also −α ∈ Tl, −β ∈ Tm and −γ ∈ Tn.
Then, by [Ma, Theorem 1], there exist three matrices A,B,C ∈ SL(2, p)

such that ABC = 1, tr(A) = α, tr(B) = β and tr(C) = γ. Denote by Ā the
image of a matrix A in PSL(2, p). Then, Ā has order l, B̄ has order m and
C̄ has order n.

By [Ma, Theorem 4], the group generated by Ā and B̄ is PSL(2, p) if and
only if either α2 + β2 + γ2 − αβγ 6= 4 or α2 + β2 + γ2 + αβγ 6= 4.

In addition, if there exist some other matrices A‘, B‘, C‘ ∈ SL(2, p) such
that A‘B‘C‘ = 1, tr(A‘) = ±α, tr(B‘) = ±β and tr(C‘) = ±γ then by
[Ma, Theorem 3], there is some g ∈ PGL(2, p) such that gĀg−1 = Ā‘ and
gB̄g−1 = B̄‘ implying that also gC̄g−1 = gB̄−1Ā−1g−1 = C̄‘. �

Corollary 3.17. Let p ≥ 5 be an odd prime, then in PSL(2, p),

(i) d′(PSL(2, p); (2, 3, p)) = 1.

(ii) If r ≥ 7 and r | p±1
2 then d′(PSL(2, p); (2, 3, r)) = φ(r)

2 .
(iii) d′(PSL(2, p); (p, p, p)) = 1.

(iv) If r ≥ 7 and r | p±1
2 then

d′(PSL(2, p); (r, r, r)) =
ψ(ψ + 1)(ψ + 2)

6
,

where ψ = φ(r)
2 .

(v) If 2 < l < m < n such that n > 5 and l,m, n all divide p±1
2 , then

d′(PSL(2, p); (l,m, n)) =
φ(l)φ(m)φ(n)

8
.

(vi) If 2 ≤ l ≤ m ≤ n such that m > 2 and n > 5 then

d′(PSL(2, p); (l,m, n)) ≤
φ(l)φ(m)φ(n)

8
.

Proof. The proof is based on Lemma 3.15 and Lemma 3.16.

(i) The orders (2, 3, p) correspond to the traces (0,±1,±2).
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(ii) The orders (2, 3, r) correspond to the traces (0,±1,±γ), withOrd(γ) =
r. We need to verify that 02+12+γ2−0 6= 4. Indeed, 02+12+γ2−0 =
4 is equivalent to γ2 = 3, and γ2 = 3 if and only if Ord(γ) = 6, a
contradiction.

(iii) The orders (p, p, p) correspond to the traces (−2,−2, 2) (see [Ma,
Theorem 7]).

(iv) The orders (r, r, r) correspond to the traces (±αi,±αj ,±αk) for 1 ≤
i ≤ j ≤ k ≤ ψ. If α2

i + α2
j + α2

k − αiαjαk = 4, then α2
i + α2

j +

α2
k − αiαjαk 6= 4, hence, if necessary, we may replace (αi, αj , αk) by

(−αi,−αj ,−αk). Therefore,

d′(PSL(2, p); (r, r, r)) =

(

ψ

3

)

+ 2

(

ψ

2

)

+ ψ =
ψ(ψ + 1)(ψ + 2)

6
.

(v) The orders (l,m, n) correspond to the traces (α, β, γ) whereOrd(α) =
l, Ord(β) = m, Ord(γ) = n, and α, β, γ 6= 0. Now, we may replace
(α, β, γ) by (−α,−β,−γ), if necessary.

(vi) This follows from the previous calculations.

�

Proof of Theorem 1.9. Let p be an odd prime, and let τ1 = (r1, s1, t1) and
τ2 = (r2, s2, t2) be two hyperbolic types. By Corollary 3.17, for i = 1, 2,
d′(PSL(2, p); (ri, si, ti)) is maximal when ri, si and ti are three different in-

tegers dividing p±1
2 , and hence is at most φ(ri)φ(si)φ(ti)

8 .
Define the following constant

c :=
φ(r1)φ(s1)φ(t1)φ(r2)φ(s2)φ(t2)

16
.

Then, by Corollary 3.6,

h(G; τ1, τ2) ≤ d(G; τ1) · d(G; τ2) = 2d′(G; τ1) · 2d
′(G; τ2) ≤ c.

�

3.4. Ramification structures and Hurwitz components for abelian

groups and their extensions. In this Section we generalize previous re-
sults regarding abelian groups and their extensions, which appeared in [BCG05].

3.4.1. Ramification structures of abelian groups. The following Theorem gen-
eralizes [BCG05, Theorem 3.4] in case G abelian and S is isogeneous to a
higher product (not necessarily Beauville).

From now on we use the additive notation for abelian groups.

Theorem 3.18. Let G be an abelian group, given as

G ∼= Z/n1Z× · · · × Z/ntZ,

where n1 | · · · | nt. For a prime p, denote by li(p) the largest power of p
which divides ni (for 1 ≤ i ≤ t).

Let r1, r2 ≥ 3, then G admits an unmixed ramification structure of size
(r1, r2) if and only if the following conditions hold:

• r1, r2 ≥ t+ 1;
• nt = nt−1;
• If lt−1(3) > lt−2(3) then r1, r2 ≥ 4;
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• lt−1(2) = lt−2(2);
• If lt−2(2) > lt−3(2) then r1, r2 ≥ 5 and r1, r2 are not both odd.

Proof. Let (x1, . . . , xr1 ; y1, . . . , yr2) be an unmixed ramification structure of
size (r1, r2). Set

Σ1 := Σ(x1, . . . , xr1) := {i1x1, . . . , ir1xr1 : i1, . . . ir1 ∈ Z},

and

Σ2 := Σ(y1, . . . , yr2) := {j1y1, . . . , jr2yr2 : j1, . . . jr2 ∈ Z},

and recall that Σ1 ∩Σ2 = {0}.
Consider the primary decomposition of G,

G =
⊕

p∈{Primes}

Gp,

and observe that since G is generated by min{r1, r2}− 1 elements, so is any
Gp (which is a characteristic subgroup of G).

Therefore, Gp can be written as

Gp ∼= Z/pk1Z× · · · × Z/pkt−1Z× Z/pktZ,

where k1 ≤ · · · ≤ kt−1 ≤ kt and 1 ≤ t ≤ min{r1, r2} − 1.
Denote Hp := pkt−1Gp, and observe that Hp is an elementary abelian

group of rank at most t.
Step 1. Let x1 = (x1,p) ∈

⊕

p∈{Primes}Gp and let

Σ1,p := Σ(x1,p, . . . , xr1,p) := {l1x1,p, . . . , lr1xr1,p : l1, . . . lr1 ∈ Z},

be the set of multiples of (x1,p, . . . , xr1,p), then by the Chinese Remainder
Theorem, x1,p is a multiple of x1, and hence Σ1 ⊇ Σ1,p.

Step 2. Gp is not cyclic.

Otherwise, if Gp ∼= Z/pkZ, then Hp = pk−1Gp ∼= Z/pZ. Since Σ1,p

contains a generator of Gp, it also contains a non-trivial element of Hp and
so Σ1,p ⊇ Hp. Thus Σ1 ⊇ Hp, and similarly Σ2 ⊇ Hp, a contradiction to
Σ1 ∩ Σ2 = {0}.

Step 3. kt = kt−1, namely Gp ∼= Z/pk1Z × · · · × Z/pkt−1Z × Z/pkt−1Z,
where k1 ≤ · · · ≤ kt−1 and 2 ≤ t ≤ min{r1, r2} − 1.

Otherwise, if kt 6= kt−1, then Hp = pkt−1Gp ∼= Z/pZ. As in Step 2, Σ1,p

contains a generator ofGp, and so it also contains a non-trivial element ofHp.
Thus Σ1,p ⊇ Hp, and similarly Σ2,p ⊇ Hp, a contradiction to Σ1 ∩Σ2 = {0}.

Step 4. p = 2 or 3.
The extra conditions for p = 2 and 3 are due to dimensional reasons.

• Let p = 2 and assume that kt−1 > kt−2. In this case, H2
∼= (Z/2Z)2

contains only three non-trivial vectors. However, |H2∩Σ1,2| ≥ 2 and
|H2 ∩ Σ2,2| ≥ 2, a contradiction to Σ1 ∩ Σ2 = {0}.

• Let p = 2 and assume that kt−1 = kt−2 > kt−3. In this case, H2
∼=

(Z/2Z)3 contains only seven non-trivial vectors.
If r1 = 4 then Σ1,2 contains four different vectors which generate

H2, whose sum is zero, say {e1, e2, e3, e1 + e2 + e3}. Now, the other
three vectors in H2 are necessarily {e1 + e2, e1 + e3, e2 + e3}, which
are linearly dependent, and so cannot generate H2

∼= (Z/2Z)3.
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When r1 is odd, Σ1,2 contains four different vectors from H2.
Indeed, a sum x1 + · · · + xr1 of some vectors v, u,w over Z/2Z (i.e.
xi ∈ {v, u,w}), where r1 is odd, cannot be equal to 0, unless v, u
and w are linearly dependent, and so cannot generate H2

∼= (Z/2Z)3.
Thus, if r1 is odd, then |H2 ∩ Σ1,2| ≥ 4, and similarly, if r2 is odd,
then |H2 ∩ Σ2,2| ≥ 4, a contradiction to Σ1 ∩ Σ2 = {0}.

• Let p = 3 and assume that kt−1 > kt−2. In this case, H3
∼= (Z/3Z)2

contains only eight non-trivial vectors. If r1 = 3 then Σ1,3 contains
three different vectors, which generate H3, whose sum is zero, say
{e1, e2, 2e1+2e2}, as well as their multiples {2e1, 2e2, e1+e2}. Now,
the other two vectors in H2 are necessarily {e1+2e2, 2e1+e2}, which
are linearly dependent, and so cannot generate H3

∼= (Z/3Z)2.

Step 5. Now, let p ≥ 5 and assume that Gp = Z/pk1Z×· · ·×Z/pkt−1Z×
Z/pkt−1Z, where k1 ≤ · · · ≤ kt−1 and 2 ≤ t ≤ min{r1, r2} − 1. We will
choose appropriate vectors for Σ1,p and Σ2,p.

Assume that (a, b, c, d) satisfy the condition in Equation (11) below, and
let

x1,p = (1, 0, . . . , 0, 1, 0) y1,p = (1, 0, . . . , 0, a, b)

x2,p = (0, 1, 0, . . . , 0, 0, 1) y2,p = (0, 1, 0, . . . , 0, c, d)

x3,p = (0, 0, 1, 0, . . . , 0,−1, 0) y3,p = (0, 0, 1, 0, . . . , 0,−a,−b)

x4,p = (0, 0, 0, 1, 0 . . . , 0, 0,−1) y4,p = (0, 0, 0, 1, 0, . . . , 0,−c,−d)

...
...

xt−2,p = (0, . . . , 0, 1, ∗, ∗) yt−2,p = (0, . . . , 0, 1, ∗, ∗)

xt−1,p = (0, . . . , 0, 0, ∗, ∗) yt−1,p = (0, . . . , 0, 0, ∗, ∗)

xt,p = (0, . . . , 0, 0, ∗, ∗) yt,p = (0, . . . , 0, 0, ∗, ∗)

...
...

xr1,p = (−1, . . . ,−1,−1,−1) yr2,p = (−1, . . . ,−1,−a− c,−b− d)

where the elements marked with (∗, ∗) in xt−2,p (and after) are chosen from
{(0,±1), (±1, 0),±(1, 1)} such that (x1,p, x2,p, . . . , xt,p) are independent and
the sum x1,p + · · · + xr1,p = 0. Similarly, the elements marked with (∗, ∗)
in yt−2,p (and after) are chosen from {±(a, b),±(c, d),±(a + c, b+ d)}, such
that (y1,p, y2,p, . . . , yt,p) are independent and y1,p + · · ·+ yr1,p = 0.

Since 〈x1,p, . . . , xr1,p〉 = Gp = 〈y1,p, . . . , yr2,p〉, we deduce that (x1,p, . . . , xr1,p)
form a spherical r1−system of generators for Gp and that (y1,p, . . . , yr2,p)
form a spherical r2−system of generators for Gp. Moreover, for every
1 ≤ i ≤ r1, 1 ≤ j ≤ r2, and k, l ∈ Z, if the vectors kxi,p and lyj,p are
not trivial, then they are linearity independent. Hence, Σ1,p ∩ Σ2,p = {0},
as needed.

When p = 2 or 3 it suffices to construct unmixed ramification structures
for the elementary abelian groups in characteristic 2 and 3. These yield
an unmixed ramification structure for any choice of H2 (resp. H3), which
induces an appropriate structure for any G2 (resp. G3), by completing the
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generating vectors of H2 (resp. H3) to generating vectors of G2 (resp. G3),
essentially in the same way of p ≥ 5. These constructions are described in
the following Lemmas 3.19 and 3.20.

Now, recall that by using the primary decomposition of G, it was enough
to check the conditions on each primary component Gp, thus G admits an
unmixed ramification structure of size (r1, r2) as needed. �

Lemma 3.19. Let G = (Z/2Z)t.
If t ≥ 4 then G always admits an unmixed ramification structure of size

(r1, r2), for any r1, r2 ≥ t+ 1.
If t = 3 then G admits an unmixed ramification structure of size (r1, r2),

if and only if r1, r2 ≥ 5 and r1, r2 are not both odd.

Lemma 3.20. Let G = (Z/3Z)t.
If t ≥ 3 then G always admits an unmixed ramification structure of size

(r1, r2), for any r1, r2 ≥ t+ 1.
If t = 2 then G admits an unmixed ramification structure of size (r1, r2),

if and only if r1, r2 ≥ 4.

The proofs of both lemmas are straight forward calculation.

Lemma 3.21. Let p ≥ 5 be a prime number and U := (Z/pZ)∗, the number
N of quadruples (a, b, c, d) ∈ U such that:

(11) a− b, a+ c, c− d, b+ d, a+ c− b− d, ad− bc ∈ U

is N = (p− 1)(p − 2)(p − 3)(p − 4).

Proof. The number N equals p − 1 times the number of solutions that we
get for a = 1. Now, b 6= 0, 1, so there are p − 2 possibilities for b. The
conditions c 6= 0,−1 and d 6= 0,−b imply (p − 2)2 possibilities for the pair
(c, d). From this number we need to subtract the number of solutions for
c = d, d = 1− b+ c and d = bc, which are p− 2, p− 2 and p− 4 respectively.
We deduce that there are (p−2)2− [(p−2)+(p−2)+(p−4)] = (p−3)(p−4)
possibilities for the pair (c, d). Hence N = (p − 1)(p − 2)(p − 3)(p − 4). �

We remark that this Lemma corrects the calculation given in [BCG05,
Theorem 3.4].

3.4.2. Hurwitz components in case (Z/nZ)2. Observe that for G = (Z/nZ)2

there is only one type of a spherical 3−system of generators, which is τ =
(n, n, n). Also note that Aut(G) ∼= GL(2, n).

The following Lemmas give a more precise estimation of the number of
Hurwitz components in case G = (Z/nZ)2, which generalizes Remark 3.5
in [BCG05].

Lemma 3.22. Let p ≥ 5 be a prime. The number h = h(G; τ, τ), where
τ = (p, p, p), of Hurwitz components for G = (Z/pZ)2 satisfies

Np/72 ≤ h ≤ Np/6,

where Np = (p− 1)(p − 2)(p − 3)(p − 4).

Proof. Let (x1, x2; y1, y2) be an unmixed Beauville structure for G. Since
x1, x2 are generators of G, they are a basis, and without loss of generality
x1, x2 are the standard basis x1 = (1, 0), x2 = (0, 1). Now, let y1 = (a, b),
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y2 = (c, d), then the condition Σ1 ∩Σ2 = {0} means that any pair of the six
vectors yield a basis of G, implying that a, b, c, d must satisfy the conditions
given in Equation (11).

Moreover, theNp pairs
(

(1, 0), (0, 1); (a, b), (c, d)
)

, where a, b, c, d satisfy (11),
are exactly the representatives for the Aut(G)−orbits in the set U(G; τ, τ).

Now, one should consider the action of B3 × B3 on U(G; τ, τ), which
is equivalent to the action of S3 × S3, since G is abelian. The action of
S3 on the second component is obvious (there are 6 permutations), and
the action of S3 on the first component can be translated to an equivalent
Aut(G)−action, given by multiplication in one of the six matrices:
(

1 0
0 1

)

,

(

0 1
1 0

)

,

(

−1 0
−1 1

)

,

(

1 −1
0 −1

)

,

(

−1 1
−1 0

)

,

(

0 −1
1 −1

)

,

yielding an equivalent representative.
Therefore, the action of S3 on the second component yields orbits of

length 6, and the action of S3 on the first component connects them to-
gether, and gives orbits of sizes from 6 to 36. Moreover since one can
exchange the vector (x1, x2) with the vector (y1, y2) we get the desired re-
sult. �

Corollary 3.23. Let p ≥ 5 be a prime. The number h = h(G; τ, τ), where
τ = (pk, pk, pk), of Hurwitz components for G = (Z/pkZ)2 satisfies

Npk/72 ≤ h ≤ Npk/6,

where Npk = p4k−4(p− 1)(p − 2)(p − 3)(p − 4).

Proof. In this case, the number Npk of Aut(G)−orbits in the set U(G; τ, τ)

is exactly p4k−4 times Np, and the proof is the same as in the previous
Lemma 3.22. �

Corollary 3.24. Let n be an integer s.t. (n, 6) = 1. The number h =
h(G; τ, τ), where τ = (n, n, n), of Hurwitz components for G = (Z/nZ)2,

where n = pk11 · . . . · pktt , satisfies

Nn/72 ≤ h ≤ Nn/6,

where Nn =
∏t
i=1 p

4ki−4
i (pi − 1)(pi − 2)(pi − 3)(pi − 4).

Proof. By the Chinese Remainder Theorem, the numberNn of Aut(G)−orbits
in the set U(G; τ, τ) can be computed using Corollary 3.23, and the proof is
now the same as in Lemma 3.22. �

Remark 3.25. It clearly follows that Nn = O(n4). In addition, in [GJT] is
given an explicit formula for Nn.

Notice that if n is divisible by the first l primes pi ≥ 5 then since:

lim
l→∞

∏

i

(1−
1

pi
) = 0

we have Nn/n
4 → 0 as l → ∞.
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3.4.3. Hurwitz components in case G = (Z/pZ)r. Fix an integer r, let p > 5
be a prime number, and let G = (Z/pZ)r, then by Theorem 3.18, G admits
an unmixed ramification structure of type (τ1, τ2) where τ1 = τ2 = τ =
(p, . . . , p) (p appears (r + 1)−times) and r1 = r2 = r + 1.

Proposition 3.26. Fix an integer r ≥ 2, then the number h = h(G; τ, τ)
of Hurwitz components for G = (Z/pZ)r and τ = (p, . . . , p) (p appears
(r + 1)−times) satisfies, as p→ ∞,

h = Θ(pr
2

).

Proof. Let (x1, . . . , xr+1; y1, . . . , yr+1) be an unmixed ramification structure
for G. Since x1, . . . , xr+1 generate G, they are a basis, and without loss of
generality they are of the form given in Step 5 of Theorem 3.18. However,
for y1, . . . , yr+1 one can take any appropriate set of r+1 vectors in (Z/pZ)r,
which admit an unmixed ramification structure, and so each proper choice of
(y1, . . . , yr+1) corresponds to exactly one Aut(G)−orbit in the set U(G; τ, τ).

Therefore, one can choose any invertible (r − 2)× (r − 2) matrix for






y1,1 . . . y1,r−2
...

yr−2,1 . . . yr−2,r−2






,

choose any vector of length r− 2 for (yr−1,1, . . . , yr−1,r−2), and similarly for
(yr,1, . . . , yr,r−2). Moreover, for 1 ≤ i ≤ r−2, one can choose for (yi,r−1, yi,r)
any vector from the set S := {(a, b) ∈ F

2
p : a 6= 0, b 6= 0, a 6= b}. Observe

that |S| = (p− 1)(p − 2).
Now, one has to make sure that yr−1 is not a linear combination of

y1, . . . , yr−2, by choosing (yr−1,r−1, yr−1,r) appropriately from S, and so
there are at least (p− 1)(p − 2)− 1 = p2 − 3p+ 1 possibilities for this pair.
Moreover, one should choose (yr,r−1, yr,r) appropriately from S, such that yr
is not some linear combination of y1, . . . , yr−1, and that (yr+1,r−1, yr+1,r) ∈
S, and so the number of possibilities to the pair (yr,r−1, yr,r) is at least
(p− 3)(p − 5) = p2 − 8p + 15.

The condition that the pairs (yi,r−1, yi,r) ∈ S for 1 ≤ i ≤ r+1 is needed to
guarantee that for any k, l ∈ Z and 1 ≤ i, j ≤ r+1, if the vectors kxi and lyj
are not trivial, then they are linearity independent, and so Σ1 ∩ Σ2 = {0},
as needed.

Hence, the number of Aut(G)−orbits in the set U(G; τ, τ) is bounded from
below by

|GL((r − 2), p)|p2(r−2)
(

(p− 1)(p − 2)
)r−2

(p2 − 3p + 1)(p2 − 8p + 15)

= Θ
(

p(r−2)2+2(r−2)+2(r−2)+2+2
)

= Θ
(

pr
2)

.

It is clear that the number of orbits is bounded from above by

|GL(r, p)| = Θ(pr
2

).

Now, the action of Br+1 × Br+1 on the Aut(G)−orbits of U(G; τ, τ), is
equivalent to the action of Sr+1 × Sr+1, since G is abelian, and so yields
orbits of sizes between (r + 1)! and ((r + 1)!)2. This has no effect on the
above asymptotic, however, since r is fixed. �



BEAUVILLE SURFACES, MODULI SPACES AND FINITE GROUPS 23

3.4.4. Extensions of abelian groups, dihedral groups and small groups.

Group theoretical proof to Lemma 2.4. If r1 = r2 = 3, then the result fol-
lows from [BCG05, Proposition 3.2]. Note that when ri = 3 (for i = 1 or 2)
the above inequality is equivalent to the condition that µi < 1.

If µ > 1 then the possible unordered types are

(2, 2, n)(n ∈ N), (2, 3, 3), (2, 3, 4), (2, 3, 5).

In the first case, G ∼= Dn is a dihedral group of order 2n, and thus cannot
admit an unmixed Beauville structure by [BCG05, Lemma 3.7]. Moreover,
G cannot admit an unmixed ramification structure (T1, T2), where T1 has an
unordered type (2, 2, n). Indeed, let Cn denote a maximal cyclic subgroup
of Dn, then Dn \Cn contains at most two conjugacy classes, more precisely,
it contains one if n is odd and two if n is even. If n is odd, since both T1
and T2 contain elements of Dn \ Cn, then Σ1 ∩ Σ2 6= {1}. If n is even, then
T1 necessarily contains two elements from two different conjugacy classes
of Dn \ Cn, and T2 always contains an element of Dn \ Cn, which again
contradicts Σ1 ∩ Σ2 = {1}.

In the other cases, one obtains the following isomorphisms of triangular
groups

∆(2, 3, 3) ∼= A4, ∆(2, 3, 4) ∼= S4, ∆(2, 3, 5) ∼= A5,

and it is easy to check that these groups do not admit an unmixed Beauville
structure (see also [BCG05, Proposition 3.6]). Moreover, these groups can-
not admit an unmixed ramification structure (T1, T2), where T1 has an un-
ordered type (2, 3, n) and n = 3, 4, 5. Indeed, in the groups A4 and A5, any
two elements of the same order are either conjugate or one can be conju-
gated to some power of the other, in contradiction to Σ1∩Σ2 = {1}. For the
group S4, T1 necessarily contains one 2-cycle, one 3-cycle and one 4-cycle,
so the condition Σ1 ∩ Σ2 = {1} implies that T2 can contain only elements
which have exactly two 2-cycles, and these elements cannot generate S4,
yielding a contradiction.

If µ = 1 then the possible unordered types are

(3, 3, 3), (2, 4, 4), (2, 3, 6),

and so G is a finite quotient of one of the wall-paper groups and cannot
admit an unmixed Beauville structure by [BCG05, §6]. Moreover, the ar-
guments in [BCG05, §6] show that, in fact, these groups cannot admit an
unmixed ramification structure (T1, T2), where T1 has an unordered type
either (3, 3, 3) or (2, 4, 4) or (2, 3, 6). For example, if G is a quotient of the
triangle group ∆(3, 3, 3), and we denote by A the maximal normal abelian
subgroup of G, then by [BCG05, Proposition 6.3], for any g ∈ G \ A there
exists some integer i s.t. gi belongs to one of two fixed conjugacy classes
C1 and C2. Moreover, T1 necessarily contains two elements g1, g2 ∈ G \ A
such that gi11 ∈ C1 and gi22 ∈ C2 for some i1, i2. Since T2 always contains an
element of G \ A, this contradicts Σ1 ∩ Σ2 = {1}.



24 SHELLY GARION, MATTEO PENEGINI

For r1, r2 ≥ 4 the above inequality holds, unless the type is (2, 2, 2, 2). In
the latter case, G is a finite quotient of the wall-paper group

Γ ∼= 〈t1, t2, t3, t4 : t
2
1, t

2
2, t

2
3, t

2
4, t1t2t3t4〉

∼= 〈t1, t2, t3 : t
2
1, t

2
2, t

2
3, (t1t2t3)

2〉

∼= 〈t, r, s : [r, s], t2, trtr, tsts〉,

by setting t1 = rt, t2 = ts and t3 = t.
Hence, Γ ∼= Z/2Z⋉Z

2, and so all its finite quotients are of the form G =
Z/2Z⋉(Z/mZ×Z/nZ) for somem,n ∈ N. We will show in Proposition 3.27
that these groups cannot admit an unmixed ramification structure of size
(4, 4). In fact, the same argument also shows that these groups cannot admit
an unmixed ramification structure (T1, T2), where T1 has an unordered type
(2, 2, 2, 2) (see Remark 3.28). �

The above proof uses the following proposition, which generalizes the
result in [BCG05, Lemma 3.7], that dihedral groups do not admit unmixed
Beauville structures.

Proposition 3.27. For any n,m ∈ N, the finite group

G = Z/2Z ⋉ (Z/mZ× Z/nZ)

does not admit an unmixed ramification structure of size (4, 4).

Proof. Observe that G can be presented by

G = 〈t, r, s : t2, rm, sn, [r, s], tsts, trtr〉,

and so any element in G can be written uniquely as tǫrisj for ǫ ∈ {0, 1},
1 ≤ i ≤ m, 1 ≤ j ≤ n.

Conjugation of some element trisj by r−1 yields r−1trisjr = ttr−1trisjr =
trrirsj = tri+2sj , and similarly conjugation by s−1 yields trisj+2. Hence,
trisj can be conjugated to tri+2ksj+2l for any k, l.

Let A ∼= Z/mZ × Z/nZ be the maximal normal abelian subgroup in
G, then G \ A contains at most four conjugacy classes, represented by
t, tr, ts, trs. In fact, it contains one conjugacy class if both m,n are odd,
two conjugacy classes if one of m,n is odd and the other is even, and four
if both m,n are even.

Since any spherical 4−system of generators of G must contain an element
of G \ A, the condition that Σ1 ∩ Σ2 = {1} immediately implies that m,n
cannot both be odd.

Assume now that m is even and n is odd, and consider the following map

G։ (Z/2Z)2, defined by (tǫrisj) 7→
(

ǫ, i(mod 2)
)

.

Note that for any j and any odd i, one has that

(risj)nm/2 = (rm/2)ni(sn)mj/2 = rm/2 =: u 6= 1.

If T = (tǫ1ri1sj1 , tǫ2ri2sj2 , tǫ3ri3sj3 , tǫ4ri4sj4) is a spherical 4−system of
generators of G, then ǫ1 + ǫ2 + ǫ3 + ǫ4 ≡ 0 (mod 2), i1 + i2 + i3 + i4 ≡ 0
(mod 2), and the images of the elements in T generate (Z/2Z)2. Hence, the
image in (Z/2Z)2 of such a spherical 4−system of generators can be (up to
a permutation) only one of

(i) {(1, 1), (1, 0), (0, 1), (0, 0)},
(ii) {(1, 1), (1, 1), (1, 0), (1, 0)},
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(iii) {(1, 1), (1, 1), (0, 1), (0, 1)},
(iv) {(1, 0), (1, 0), (0, 1), (0, 1)}.

Therefore, for any two spherical 4-systems T1 and T2 one can find x ∈ T1
and y ∈ T2 such that either

• x, y ∈ G \A are conjugate; or

• x, y ∈ A and xmn/2 = u = ymn/2;

a contradiction to Σ1 ∩ Σ2 = {1}.
If both m and n are even, write m = 2µm′ and n = 2νn′, where m′, n′ are

odd. Without loss of generality, we may assume that µ ≥ ν.
Consider the following map

G։ (Z/2Z)3, defined by (tǫrisj) 7→
(

ǫ, i(mod 2), j(mod 2)
)

.

If µ > ν and if i is odd then

(risj)2
µ−1m′n′

= (r2
µ−1m′

)in
′

(s2
µ−1n′

)jm
′

= rm/2 := u 6= 1,

and if µ = ν then

(risj)2
µ−1m′n′

=











rm/2 := u 6= 1, if i is odd and j is even;

sn/2 := v 6= 1, if i is even and j is odd;

rm/2sn/2 := w 6= 1, if i, j are odd.

If T = (tǫ1ri1sj1 , tǫ2ri2sj2 , tǫ3ri3sj3 , tǫ4ri4sj4) is a spherical 4−system of
generators of G, then ǫ1 + ǫ2 + ǫ3 + ǫ4 ≡ 0 (mod 2), i1 + i2 + i3 + i4 ≡ 0
(mod 2), j1 + j2 + j3 + j4 ≡ 0 (mod 2) and the images of the elements
in T generate (Z/2Z)3. Hence, the image in (Z/2Z)3 of such a spherical
4−system of generators can be (up to a permutation) only one of

(i) {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)},
(ii) {(1, 1, 0), (1, 0, 1), (0, 1, 0), (0, 0, 1)},
(iii) {(1, 1, 0), (1, 0, 0), (0, 1, 1), (0, 0, 1)},
(iv) {(1, 1, 1), (1, 0, 1), (0, 1, 1), (0, 0, 1)},
(v) {(1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0)},
(vi) {(1, 1, 1), (1, 1, 0), (0, 1, 1), (0, 1, 0)},
(vii) {(1, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0, 0)}.

Therefore, for any two spherical 4-systems T1 and T2 one can find x ∈ T1
and y ∈ T2 such that either

• x, y ∈ G \A are conjugate; or

• x, y ∈ A and x2
µ−1m′n′

= u = y2
µ−1m′n′

; or

• x, y ∈ A and x2
µ−1m′n′

= v = y2
µ−1m′n′

;

a contradiction to Σ1 ∩ Σ2 = {1}. �

Remark 3.28. In fact, the same argument also shows that the finite group
G = Z/2Z ⋉ (Z/mZ × Z/nZ) (m,n ∈ Z) cannot admit an unmixed ramifi-
cation structure (T1, T2), where T1 has type (2, 2, 2, 2).

Recall that G\A contains at most four conjugacy classes, more precisely,
it contains one conjugacy class if both m,n are odd, two conjugacy classes
if one of m,n is odd and the other is even, and four if both m,n are even.

Since any spherical system of generators of G must contain an element
of G \ A, the condition that Σ1 ∩ Σ2 = {1} immediately implies that m,n
cannot both be odd.
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If m is even and n is odd, then the above argument shows that the image
in (Z/2Z)2 of any spherical system of generators contains at least two of
(1, 1), (1, 0), (0, 1), and hence one can find x ∈ T1 and y ∈ T2 such that either
x, y ∈ G \ A are conjugate, or x, y ∈ A and xmn/2 = ymn/2, a contradiction
to Σ1 ∩ Σ2 = {1}.

If m is even and n is even, then the elements of order two in G are
exactly trisj (1 ≤ i ≤ m, 1 ≤ j ≤ n), u = rm/2, v = sn/2 and w = rm/2sn/2.
The above argument shows that T1 either contains four elements from four
different conjugacy classes of G \ A, or two elements from two different
conjugacy classes of G \ A and two different elements of {u, v, w}. Since
T2 is also a spherical system of generators, then one can find x ∈ T1 and
y ∈ T2 such that either x, y ∈ G \ A are conjugate, or yi = x ∈ {u, v, w}, a
contradiction to Σ1 ∩Σ2 = {1}.
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