A novel mathematical procedure is presented, which makes it possible to optimize lozenge-shaped dielectric-elastomer-based linear actuators for known materials and desired force/stroke requirements. Simulation and experimental results are provided which both demonstrate the efficacy of the proposed optimization procedure with respect to traditional design approaches and show that simpler, cheaper, lighter, and better-behaved lozenge-shaped actuators can be conceived, which do not require any integration of compliant frame elements.

Optimal design of lozenge-shaped dielectric elastomer linear actuators: Mathematical procedure and experimental validation

BERSELLI, GIOVANNI;
2010-01-01

Abstract

A novel mathematical procedure is presented, which makes it possible to optimize lozenge-shaped dielectric-elastomer-based linear actuators for known materials and desired force/stroke requirements. Simulation and experimental results are provided which both demonstrate the efficacy of the proposed optimization procedure with respect to traditional design approaches and show that simpler, cheaper, lighter, and better-behaved lozenge-shaped actuators can be conceived, which do not require any integration of compliant frame elements.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/810933
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact