A new class-modeling method, referred to as partial least squares density modeling (PLS-DM), is presented. The method is based on partial least squares (PLS), using a distance-based sample density measurement as the response variable. Potential function probability density is subsequently calculated on PLS scores and used, jointly with residual Q statistics, to develop efficient class models. The influence of adjustable model parameters on the resulting performances has been critically studied by means of cross-validation and application of the Pareto optimality criterion. The method has been applied to verify the authenticity of olives in brine from cultivar Taggiasca, based on near-infrared (NIR) spectra recorded on homogenized solid samples. Two independent test sets were used for model validation. The final optimal model was characterized by high efficiency and equilibrate balance between sensitivity and specificity values, if compared with those obtained by application of well-established class-modeling methods, such as soft independent modeling of class analogy (SIMCA) and unequal dispersed classes (UNEQ).

Partial least squares density modeling (PLS-DM) - a new class-modeling strategy applied to the authentication of olives in brine by near-infrared spectroscopy

OLIVERI, PAOLO;CASOLINO, MARIA CHIARA;LANTERI, SILVIA
2014-01-01

Abstract

A new class-modeling method, referred to as partial least squares density modeling (PLS-DM), is presented. The method is based on partial least squares (PLS), using a distance-based sample density measurement as the response variable. Potential function probability density is subsequently calculated on PLS scores and used, jointly with residual Q statistics, to develop efficient class models. The influence of adjustable model parameters on the resulting performances has been critically studied by means of cross-validation and application of the Pareto optimality criterion. The method has been applied to verify the authenticity of olives in brine from cultivar Taggiasca, based on near-infrared (NIR) spectra recorded on homogenized solid samples. Two independent test sets were used for model validation. The final optimal model was characterized by high efficiency and equilibrate balance between sensitivity and specificity values, if compared with those obtained by application of well-established class-modeling methods, such as soft independent modeling of class analogy (SIMCA) and unequal dispersed classes (UNEQ).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/810516
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 36
social impact