In this paper a reconfigurable analog VLSI neural network architecture is presented. The analog architecture implements a Multi-Layer Perceptron whose topology can be programmed without any modification of the off-chip connections. The architecture is scaleable and modular since it is based on a single-chip configurable basic module. To obtain a robust behaviour with respect to noise and errors introduced in the computation by analog circuits, we use non-linear synapses and linear neurons as neural primitives.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | A reconfigurable analog VLSI neural network architecture with non linear synapses | |
Autori: | ||
Data di pubblicazione: | 1998 | |
Rivista: | ||
Abstract: | In this paper a reconfigurable analog VLSI neural network architecture is presented. The analog architecture implements a Multi-Layer Perceptron whose topology can be programmed without any modification of the off-chip connections. The architecture is scaleable and modular since it is based on a single-chip configurable basic module. To obtain a robust behaviour with respect to noise and errors introduced in the computation by analog circuits, we use non-linear synapses and linear neurons as neural primitives. | |
Handle: | http://hdl.handle.net/11567/246702 | |
Appare nelle tipologie: | 01.01 - Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.