In this paper we present the analog architecture and the implementation of an on-chip learning Multi Layer Perceptron network. The learning algorithm is based on Back Propagation but it exhibits increased capabilities due to local learning rate management. A prototype chip (SLANP, Self-Learning Neural Processor) has been designed and fabricated in a CMOS 0.7 µm minimum channel length technology. We report the experimental results that confirm the functionality of the chip and the soundness of the approach. The SLANP performance compare favourably with those reported in the literature.

A Self-Learning Analog Neural Processor

CAVIGLIA, DANIELE;VALLE, MAURIZIO
2002

Abstract

In this paper we present the analog architecture and the implementation of an on-chip learning Multi Layer Perceptron network. The learning algorithm is based on Back Propagation but it exhibits increased capabilities due to local learning rate management. A prototype chip (SLANP, Self-Learning Neural Processor) has been designed and fabricated in a CMOS 0.7 µm minimum channel length technology. We report the experimental results that confirm the functionality of the chip and the soundness of the approach. The SLANP performance compare favourably with those reported in the literature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/245544
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact