A low-power, low-voltage universal multi-mode Gm-C filter using a 180 nm TSMC technology node is presented in this paper. The proposed filter employs only three transconductance operational amplifiers (OTAs) operating in the sub-threshold region with a supply voltage of 0.5 V, resulting in a power consumption of 32 nW. Moreover, without additional active elements, the proposed circuit can operate various functional modes, such as voltage, current, transconductance, and trans-resistance. The filter’s frequency, centered at 462 Hz, and a compact and low-power solution showing only 93.5 µVrms input-referred noise make the proposed fi lter highly suitable for bio-signal processing.
A 0.5 V, 32 nW Compact Inverter-Based All-Filtering Response Modes Gm-C Filter for Bio-Signal Processing
Namdari, Ali;Aiello, Orazio;Caviglia, Daniele D.
2024-01-01
Abstract
A low-power, low-voltage universal multi-mode Gm-C filter using a 180 nm TSMC technology node is presented in this paper. The proposed filter employs only three transconductance operational amplifiers (OTAs) operating in the sub-threshold region with a supply voltage of 0.5 V, resulting in a power consumption of 32 nW. Moreover, without additional active elements, the proposed circuit can operate various functional modes, such as voltage, current, transconductance, and trans-resistance. The filter’s frequency, centered at 462 Hz, and a compact and low-power solution showing only 93.5 µVrms input-referred noise make the proposed fi lter highly suitable for bio-signal processing.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.