The energy consumption of a heating, ventilation, and air conditioning (HVAC) system represents a large amount of the total for a commercial or civic building. In order to optimize the system performance and to increase the comfort of people living or working in a building, it is necessary to monitor the relevant parameters of the circulating air flux. To this end, an array of sensors (i.e., temperature, humidity, and CO2 percentage sensors) is usually deployed along the aeraulic ducts and/or in various rooms. Generally, these sensors are powered by wires or batteries, but both methods have some drawbacks. In this paper, a possible solution to these drawbacks is proposed. It presents a wireless sensor node powered by an Energy Harvesting (EH) device acted on by the air flux itself. The collected data are transmitted to a central unit via a LoRa radio channel. The EH device can be placed in air ducts or close to air outlets.

Monitoring the Air Quality in an HVAC System via an Energy Harvesting Device

Corrado Boragno;Orazio Aiello;Daniele D. Caviglia
2023-01-01

Abstract

The energy consumption of a heating, ventilation, and air conditioning (HVAC) system represents a large amount of the total for a commercial or civic building. In order to optimize the system performance and to increase the comfort of people living or working in a building, it is necessary to monitor the relevant parameters of the circulating air flux. To this end, an array of sensors (i.e., temperature, humidity, and CO2 percentage sensors) is usually deployed along the aeraulic ducts and/or in various rooms. Generally, these sensors are powered by wires or batteries, but both methods have some drawbacks. In this paper, a possible solution to these drawbacks is proposed. It presents a wireless sensor node powered by an Energy Harvesting (EH) device acted on by the air flux itself. The collected data are transmitted to a central unit via a LoRa radio channel. The EH device can be placed in air ducts or close to air outlets.
File in questo prodotto:
File Dimensione Formato  
sensors-23-06381.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in versione editoriale
Dimensione 4.46 MB
Formato Adobe PDF
4.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1131476
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact