A pneumatic system that transmits power via the force of compressed air is an essential component of an air-driven soft robot. Pneumatic valves are one of the key parts of this system. However, the development of soft or electronics-free valves for soft robotic applications is in its infancy, with only a few 2/2 way valves developed. Previous research has shown demands for a complex pneumatic system that can regulate the airflow in multiple channels or switching the pressure within a chamber between multiple states. Hardware redundancy is found in such complex pneumatic circuits if only 2/2 way valves are available for the system design. To increase the design freedom, this paper presents a modular approach that integrates multi-channel modular valve units and bi-stable structures for the conversion of pneumatic signals. By utilising soft-material 3D printing, the 3/2-way valve, 4/2-way valve and 5/2-way valve design are proposed in this paper to control multiple air channels simultaneously. The modular design of these 3D printed multi-port valves allows quick design and fabrication solutions of a complex electronics-free pneumatic system by reassembling different modular units of the valve. Experiment characterization of the multi-channel valves shows maximum allowable pressure at 187.2 kPa and a flow rate of 7.42 L/min under 50 kPa pressure loss. A demonstration of controlling four states of a dual-chamber soft robotic arm with only two modular multi-chamber valves was included, showing reduced valve units and overall weight compared to conventional electronics-free 2/2 way valves.

A Modular Approach to Design Multi-Channel Bistable Valves for Integrated Pneumatically-Driven Soft Robots via 3D-Printing

Perla Maiolino
2022-01-01

Abstract

A pneumatic system that transmits power via the force of compressed air is an essential component of an air-driven soft robot. Pneumatic valves are one of the key parts of this system. However, the development of soft or electronics-free valves for soft robotic applications is in its infancy, with only a few 2/2 way valves developed. Previous research has shown demands for a complex pneumatic system that can regulate the airflow in multiple channels or switching the pressure within a chamber between multiple states. Hardware redundancy is found in such complex pneumatic circuits if only 2/2 way valves are available for the system design. To increase the design freedom, this paper presents a modular approach that integrates multi-channel modular valve units and bi-stable structures for the conversion of pneumatic signals. By utilising soft-material 3D printing, the 3/2-way valve, 4/2-way valve and 5/2-way valve design are proposed in this paper to control multiple air channels simultaneously. The modular design of these 3D printed multi-port valves allows quick design and fabrication solutions of a complex electronics-free pneumatic system by reassembling different modular units of the valve. Experiment characterization of the multi-channel valves shows maximum allowable pressure at 187.2 kPa and a flow rate of 7.42 L/min under 50 kPa pressure loss. A demonstration of controlling four states of a dual-chamber soft robotic arm with only two modular multi-chamber valves was included, showing reduced valve units and overall weight compared to conventional electronics-free 2/2 way valves.
File in questo prodotto:
File Dimensione Formato  
A_Modular_Approach_to_Design_Multi-Channel_Bistable_Valves_for_Integrated_Pneumatically-Driven_Soft_Robots_via_3D-Printing.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Documento in versione editoriale
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1105333
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact