The hydrodynamics performance of submerged and surface-piercing lifting bodies is analyzed by a potential flow model based on a Vortex Lattice Method (VLM). Such a numerical scheme, widely applied in aerodynamics, is particularly suitable to model the lifting effects thanks to the vortex distribution used to discretize the boundaries of the lifting bodies. The method has been developed with specific boundary conditions to account for the development of steady free surface wave patterns. Both submerged bodies, such as flat plates and hydrofoils, as well as planing hulls can be studied. The method is validated by comparison against available experimental data and other Computational Fluid Dynamic (CFD) results from Reynolds Averaged Navier Stokes (RANS) approaches. In all the analyzed cases, namely 2D and 3D flat plates, a NACA hydrofoil, planning flat plates and prismatic planing hulls, results have been found to be consistent with those taken as reference. The obtained hydrodynamic predictionsare discussed highlighting the advantages and the possible improvements of the developed approach.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | A Vortex Lattice Method for the Hydrodynamic Solution of Lifting Bodies Traveling Close and Across a Free Surface | |
Autori: | ||
Data di pubblicazione: | 2022 | |
Rivista: | ||
Abstract: | The hydrodynamics performance of submerged and surface-piercing lifting bodies is analyzed by a potential flow model based on a Vortex Lattice Method (VLM). Such a numerical scheme, widely applied in aerodynamics, is particularly suitable to model the lifting effects thanks to the vortex distribution used to discretize the boundaries of the lifting bodies. The method has been developed with specific boundary conditions to account for the development of steady free surface wave patterns. Both submerged bodies, such as flat plates and hydrofoils, as well as planing hulls can be studied. The method is validated by comparison against available experimental data and other Computational Fluid Dynamic (CFD) results from Reynolds Averaged Navier Stokes (RANS) approaches. In all the analyzed cases, namely 2D and 3D flat plates, a NACA hydrofoil, planning flat plates and prismatic planing hulls, results have been found to be consistent with those taken as reference. The obtained hydrodynamic predictionsare discussed highlighting the advantages and the possible improvements of the developed approach. | |
Handle: | http://hdl.handle.net/11567/1082549 | |
Appare nelle tipologie: | 01.01 - Articolo su rivista |