We present a practical framework to prove, in a simple way, two-term asymptotic expansions for Fourier integrals I(t)=∫R(eitϕ(x)-1)dμ(x),where μ is a probability measure on R and ϕ is measurable. This applies to many basic cases, in link with Levy’s continuity theorem. We present applications to limit laws related to rational continued fraction coefficients.

Effective estimation of some oscillatory integrals related to infinitely divisible distributions

Bettin S.;Drappeau S.
2021-01-01

Abstract

We present a practical framework to prove, in a simple way, two-term asymptotic expansions for Fourier integrals I(t)=∫R(eitϕ(x)-1)dμ(x),where μ is a probability measure on R and ϕ is measurable. This applies to many basic cases, in link with Levy’s continuity theorem. We present applications to limit laws related to rational continued fraction coefficients.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1062906
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact