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Abstract
We present a practical framework to prove, in a simple way, two-term asymptotic
expansions for Fourier integrals

I(t) =
∫
R

(ei tφ(x) − 1) dμ(x),

where μ is a probability measure on R and φ is measurable. This applies to many
basic cases, in link with Levy’s continuity theorem. We present applications to limit
laws related to rational continued fraction coefficients.

Keywords Fourier integral · Characteristic function · Infinitely divisible
distribution · Asymptotic expansion · Limit law
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1 Introduction

Let μ be a probability measure on R, and φ : R → R be μ-measurable. The present
paper is concernedwith asymptotic formulæ for the Fourier integrals associatedwithφ

near the origin,
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I[φ](t) :=
∫

(ei tφ(x) − 1) dμ(x) (t → 0). (1.1)

Such estimates are connected with the question of whether the push-forward mea-
sure φ∗(μ) belongs to the bassin of attraction of a stable law, see Chapter 2 of [6].
Our interest in this question originates from this point of view, and more specifically
from the work [2] where we study the convergence towards stable laws of the value
distribution of invariants related to modular forms. In the setting of [2], the measure μ

is the Gauss–Kuzmin distribution

dμ(x) = dx

(1 + x) log 2
(x ∈ [0, 1]),

and this measure is invariant under the Gaussmap T (x) = {1/x}, where {x} = x−�x�
is the fractional part of x . More precisely, in [2], we are interested in Birkhoff sums

r∑
j=1

φ(T r (x)) (T r = T ◦ · · · ◦ T ), (1.2)

where x varies among rationals and r ≥ 0 is the length of the continued fractions
expansion of x . In the set of rationals we consider, these sums are found to typically
behave as sums of the shape

r∑
j=1

φ(Xr ),

where (X j )1≤ j≤r are i.i.d. random variables distributed according to the Gauss–
Kuzmin measure μ. Then effective estimates for the integral (1.1), in conjunction
with [2, Theorem 3.1] and the Berry–Esseen inequality [4, Eq. (XVI.3.13)] are used
to obtain uniform limit theorems for the rational Birkhoff sums (1.2).

We return to the setting where μ is an arbitrary probability measure on R. Inte-
grals (1.1) are related to the methods of asymptotic analysis mentioned, e.g., in Chap-
ter 9 of the monograph [8]. When expressed as convolution integrals

∫
x h(t x) f (x) dx ,

they are referred to as h-transforms in [3], and are also the topic of interest of the recent
work [7]. The variety in assumptions and methods seems to prevent us from having a
uniform framework for estimating (1.1).

The goal of the present paper is to present and prove several basic estimates through
whichone cangive a streamlined and simple proof of an effective asymptotic expansion
of the integral (1.1), including the terms of interest in central limit theorems.

Definition 1.1 Given α ∈ (0, 3] and two positive functions L, R defined in a neigh-
borhood of 0 in R

∗+, we denote by G(α, L, R) the set of functions φ : R → R such
that for some numbers c1, c2 ∈ R and c∗ ∈ C, and all small enough t > 0, there holds

I[φ](t) = ic1t + c2t
2 + c∗tαL(t) + O(t3 + tαR(t)). (1.3)
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Oscillatory integrals related to infinitely divisible distributions

Remark – If R = O(tε) for any ε > 0 and α < 1, the term c1t in (1.3) is part of the
error term, and likewise for c2t2 if α < 2.

– We will be interested in the largest one or two terms in the expansion (1.3). The
case α = 3, L = R ≡ 1 corresponds to an order 2 Taylor expansion.

– Whenever the expansion (1.3) holds forφ, wewill denote the coefficients by c1(φ),
c2(φ), c∗(φ), respectively.

Theorem 1.2 (1) If
∫ |φ(x)|α dμ(x) < ∞ for some α ∈ (0, 3], then φ ∈ G(α, 1, 1).

(2) Suppose that dμ = f dν where ν is the Lebesgue measure and f ∈ C1([0, 1]).
Then for all a ∈ R

∗, β > 3 and λ ≥ 0, the function

φ : (0, 1] → R, φ(x) = ax−β |log x |λ,

belongs to G( 1
β
, |log|λ/β+v, |log|λ/β+v−1+ε) for any ε ∈ (0, 1], where v = 1

for β ∈ {1/2, 1} and v = 0 otherwise.
(3) Given two measurable functions φ1, φ2, such that φ j ∈ G(α j , L j , R j ) with

tα2L2(t) = O(tα1L1(t)) as t → 0, then φ1 + φ2 ∈ G(α1, L1, R+) for some
positive function R+ explicit in terms of L1, L2 and R1.

The three items here are special cases of Proposition 2.1, Corollary 2.3, and Proposi-
tion 2.5 below, respectively. The coefficients c1, c2, and c∗ and the function R+ are
explicitly described in the precise versions below.

The proofs of all three result are rather short, but together they allow for a simple
proof of the expansion (1.1) in several concrete cases:

– In Corollary 3.1, we study a function φ : (0, 1] → R
2 having an asymptotic

behavior around 0 of the shape x−1/2|log x |. The ensuing estimate we obtain
is used in [2, Theorem 2.1] to deduce a central limit theorem for central val-
ues {D(1/2, x), x ∈ Q ∩ (0, 1]} of the analytic continuation of the Estermann
function

D(s, x) =
∑
n≥1

τ(n)

ns
e2π inx (Re(s) > 1), (1.4)

where τ is the divisor function.
– In Corollaries 3.3 and 3.2, we study the functions of the shape φ(x) = �1/x�λ

where λ ≥ 1/2. These functions occur when studying the values {
λ(x), x ∈
Q ∩ (0, 1]} of the moments of the continued fractions coefficients,


λ(x) =
r∑
j=1

aλ
j

(
x = [0; a1, . . . , ar ] = 1

a1 + 1
a2+···

, ar > 1

)
,

see [2, Theorems 2.5 and 9.4]. This, in turn, is applied to obtain a law of large
numbers for the values of the Kashaev invariants of the 41 knot [2, Corollary 2.6].

– In Corollary 3.4, we study the function φ on (0, 1] given by φ(x) = �1/x� −
�1/T (x)�, where T : (0, 1] → (0, 1], T (x) = {1/x} is the Gauss map. The
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estimate we obtain is used in [2, Theorem 2.7] to obtain an independent proof,
using dynamical systems, of a theorem of Vardi [10] on the convergence to a
Cauchy law of the values of Dedekind sums.

2 Estimation of (1.1) in general

2.1 Basic estimates

2.1.1 Taylor estimate

The first and simplest method to obtain an estimate for (1.1) is to insert and integrate
a Taylor expansion for the exponential.

Proposition 2.1 Assume that for some α ∈ (0, 3], we have

K :=
∫

|φ(x)|α dμ(x) < ∞.

Then φ ∈ G(α, 1, 1), and more precisely

I[φ](t) = ic1t + c2t
2 + O(Ktα) (2.1)

with c1 = ∫
φ dμ if α ≥ 1, and c2 = − 1

2

∫ |φ|2 dμ if α ≥ 2. The implied constant is
absolute.

Proof We use the bound |eiu − ∑
0≤k<α

(iu)k

k! | 
 |u|α with u = tφ(x), and integrate
over x . ��
Although it will not be useful for us here, we note that in the precise bound (2.1), the
value of α could be taken as a function of t . For example, ifμ is the Lebesgue measure
on (0, 1) and φ(x) = 1/x , we can take α = 1 − 1/|log t | and obtain I[φ](t) =
O(t |log t |).

2.1.2 Using properties of the Mellin transform

When themoment
∫ |φ|α dμdiverges at someparticularα,we canoften extract a useful

expansion from the Cauchy formula and the polar behavior of the Mellin transform.
For x ∈ R, s ∈ C and η ∈ [0, 1], let

φs,η(x) := 1φ(x) �=0|φ(x)|s exp(−s π i
2 (1 − η) sgn φ(x)), φs(x) := φs,0(x).

Note that for k ∈ N>0, φk(x) = (−iφ(x))k . Define further

Gη(s) :=
∫

φs,η(x) dμ(x).
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Oscillatory integrals related to infinitely divisible distributions

Proposition 2.2 Let α ∈ (0, 3), ρ ∈ (0, 1), δ, η0 > 0 and ξ ∈ R. Assume that for
some c > 0, we have

∫
φ(x) �=0

(|φ(x)|c + |φ(x)|−c) dμ(x) < ∞ (2.2)

and that the functions Gη(s) for η ∈ [0, η0], initially defined for Re(s) ∈ (−c, c), can
be analytically continued to the set

{
s ∈ C, 0 < Re(s) ≤ α + δ, s /∈ [α, α + δ]}.

Assume further that

sup
0≤η≤η0

∫
τ∈R

s=α+δ+iτ

∣∣Γ (−s)Gη(s)
∣∣ dτ < ∞,

and that there is an open neighborhood V of [α, α + δ] for which

(α − s)ξG0(s) = � + O(|s − α|ρ), s ∈ V � [α, α + δ], Re(s) ≤ α + δ.

(2.3)

Then, φ ∈ G(α, |log|ξ−1+υα , |log|ξ−1+υα−ρ), where υα = 1 if α = 1, 2 and υα = 0
otherwise, and with coefficients given by

c1 = iG0(1) if α > 1, c2 = 1
2G0(2) if α > 2, c∗ =

⎧⎪⎨
⎪⎩

−�/Γ (ξ + 1), α = 1,
1
2�/Γ (ξ + 1), α = 2,

�
Γ (−α)
Γ (ξ)

, α /∈ {1, 2}.
(2.4)

Proof We write

I[φ](t) + 1 =
∫

ei tφ(x) dμ(x) = J+ + J− + J0,

where J± corresponds to the part of the integral restricted to ±φ > 0.
For all ε ∈ (0, π

2 η0), define

J+(ε) :=
∫

φ(x)>0
e(−ε+i)tφ(x) dμ(x), J−(ε) :=

∫
φ(x)<0

e(ε+i)tφ(x) dμ(x).

By dominated convergence, we have J+ := limε→0+ J+(ε), and similarly for J−. We
use the Mellin transform formula for the exponential

e−y = 1

2π i

∫ −c/2+i∞

−c/2−i∞
Γ (−s)|y|ses arg(y) ds
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valid for Re(y) > 0, see [5, Eq. 17.43.1] (the extension to non-real y is straightforward
by the Stirling formula [5, Eq. 8.327.1]). Inserting this in J±(ε), we obtain

J+(ε) + J−(ε) = 1

2π i

∫ −c/2+i∞

−c/2−i∞
Γ (−s)Gη(s)|1 + iε|s t s ds,

where η = 2
π
arctan ε ≤ 2ε

π
≤ η0. We move the contour forward to Re(s) = α + δ.

The simple pole at s = 0 contributes
∫
φ(x) �=0 dμ(x), and therefore by adding the

contribution from J0, we get

J0 + J+(ε) + J−(ε) = 1 + R + 1

2π i

∫
H(α,α+δ)

Γ (−s)Gη(s)t
s |1 + iε|s ds

+ 1

2π i

∫
Re(s)=α+δ

Γ (−s)Gη(s)t
s |1 + iε|s ds,

where R consists of the contribution of the residues at 1 (if α > 1) and 2 (if α > 2).
Here H(α, α + δ) is a Hankel contour, going from α + δ − i0 to α + δ + i0 passing
around α from the left. The last integral is bounded by the triangle inequality, using
our first hypothesis on Gη, which gives

1

2π i

∫
Re(s)=α+δ

Γ (−s)Gη(s)t
s |1 + iε|s ds 
 tα+δ,

uniformly in ε. Passing to the limit ε → 0, there remains to prove

1

2π i

∫
H(α,α+δ)

Γ (−s)G0(s)t
s ds = c∗tα|log t |ξ−1+υα + O(tα|log t |ξ−1+υα−ρ).

This is done by using our second hypothesis along with a standard Hankel contour
integration argument; we refer to, e.g., Corollary II.0.18 of [9] for the details. ��

An important special case is the following.

Corollary 2.3 Let μ be defined on [0, 1] by dμ(x) = f (x) dx where f ∈ C1([0, 1]).
Let a ∈ R � {0}. For all β > 1

3 , λ ≥ 0, and φ given by

φ(x) = ax−β |log x |λ

one has φ ∈ G(1/β, |log|λ/β+υ1/β , |log|λ/β+υ1/β−1+ε) for any ε ∈ (0, 1) and with

c∗ = f (0)
|a|1/βe−π i sgn a

2β

βλ/β+1 ×

⎧⎪⎨
⎪⎩

−(λ + 1)−1, β = 1,

(4λ + 2)−1, β = 1/2,

Γ (−1/β), β /∈ {1, 1/2}.

and c1 = ∫
φ dμ if β < 1 and c2 = − 1

2

∫ |φ|2 dμ if β < 1
2 .

123



Oscillatory integrals related to infinitely divisible distributions

Proof First, we write dμ(x) = f (0)χ(x) dx + xg(x) dx , where χ is the characteristic
function of the interval [0, 1] and g ∈ C([0, 1]). For the contribution of χ dx we apply
Proposition 2.2 with any fixed c < 1/β, α = 1/β, ξ = λ/β + 1, any fixed ρ ∈ (0, 1)
and δ > 0. By [5, 4.272.6], for Re(s) < 1/β and η ∈ [0, 1] we have

Gη(s) = e−s π i
2 (1−η) sgn(a)|a|s

∫ 1

0
x−βs |log x |λs dx

= e−s π i
2 (1−η) sgn(a)|a|s Γ (λs + 1)

(1 − βs)λs+1 .

Notice also that by Stirling’s formula Gη(s) 
 eπ(
1−η
2 )|τ ||τ |−1/2 as |τ | = | Im s| →

∞, so that in any case, Γ (−s)Gη(s) 
 |τ |−1−Re(s). Therefore, the hypotheses of
Proposition 2.2 are easily verified with

� = |a|1/βe−π i sgn a
2β

Γ (λ/β + 1)

βλ/β+1 .

Thus,

∫ 1

0
(ei tφ(x) − 1) dx = i tc′

1 + c′
2t

2 + c∗t1/β |log t |λ/β+υ1/β + O(t1/β |log t |λ/β+υ1/β−ρ)

with coefficients as given in (2.4) with G0(1) = −i
∫

φχ dx and G0(2) =
− ∫

φ2χ dx . Finally, as in Proposition 2.1, we deduce

∫
(ei tφ(x) − 1)xg(x) dx = ic′′

1 t + c′′
2 t

2 + O(Ktα
′
)

for any 0 < α′ < min(3, 2
β
) and with c′′

1 = ∫
φ(x)xg(x) dx if α′ > 1 and c′′

2 =
− 1

2

∫
φ(x)2xg(x) dx if α′ > 2. The result then follows. ��

2.2 Addition

Lemma 2.4 For j ∈ {1, 2}, let δ j (x) = ei tφ j (x) − 1. Then

I[φ1 + φ2](t) = I[φ1](t) + I[φ2](t) +
∫

δ1(x)δ2(x) dμ(x)

= I[φ1](t) + I[φ2](t) + O
( ∏

j∈{1,2}

∣∣Re I[φ j ](t)
∣∣1/2) (2.5)

Proof The first equation is simply the relation ei t(φ1(x)+φ2(x)) − 1 = δ1(x) + δ2(x) +
δ1(x)δ2(x) integrated over x . The last term is bounded using the Cauchy–Schwarz
inequality
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( ∫
|δ1(x)δ2(x)| dμ(x)

)2 ≤
∏

j∈{1,2}

∫ ∣∣δ j (x)∣∣2 dμ(x)

and expanding the square on the right-hand side. ��

Proposition 2.5 For j ∈ {1, 2}, let α j ∈ (0, 2], let L j , R j be positive functions defined
on a neighborhood of 0 in R

∗+, and φ j ∈ G(α j , L j , R j ). If α1 ≤ α2, and under the
following assumptions:

– R j (t), L j (t) = to(1) as t → 0,
– R j (t) = O(L j (t)),
– t2 = O(tα1L1(t)),

we have

φ1 + φ2 ∈ G(α1, L1, R+), R+ =

⎧⎪⎨
⎪⎩
R1 if α1 < α2,

R1 + L2 + √
L1L2 if α1 = α2 < 2,

R1 + L2 + √
L1(

√
L2 + 1) if α1 = α2 = 2.

Moreover,

c1(φ1 + φ2) = c1(φ1) + c1(φ2),

c∗(φ1 + φ2) = c∗(φ1).

Proof WeuseLemma2.4;when computing the real part in (2.5), the term ic1t vanishes.
��

Remark Note that using this result might induce a slight quantitative loss in the two
cases when α1 = α2. What is gained at this price is that we are only required to study
each φ j separately, which simplifies the analysis.

We also remark that this estimate is useful only when the term c2t2 is not relevant
in (1.3). In the complementary case, Proposition 2.1 can be used, although the ensuing
error term will typically be worse than optimal by a factor of |log t |.

It is straightforward to generalize Proposition 2.5, affecting to each φ j a different
value of the frequency: under the same hypotheses and notations, and additionally
that L j , R j tend monotonically to +∞ at 0,

∫
ei t1φ1(x)+i t2φ2(x) dμ(x) = 1 + ic1(φ1)t1 + ic1(φ2)t2 + c∗tα11 L1(t1)

+ O(t2+ + tα1+ R+(t+)),

where c1, c∗ are as in the conclusion of Proposition 2.5, and t+ = max{t1, t2}.
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3 Applications

We now describe the applications we will be interested in. The measure is the Gauss–
Kuzmin distribution

dμ(x) = dx

(1 + x) log 2
(x ∈ [0, 1]).

Themeasureμ is invariant under the Gaussmap T (x) = {1/x} on (0, 1), in particular,

I[φ ◦ T ](t) = I[φ](t). (3.1)

3.1 Central values of the Estermann function

The first application we discuss is the “period function” φ : R → C associated with
the Estermann function (1.4), namely

φ(x) = D( 12 , 1/x) − D( 12 , x),

initially defined in Q ∩ (0, 1]. By [1], this function can be extended to a continuous
function on (0, 1], more precisely given by an expression of the shape (3.2) below.
Interpreting φ to be R

2-valued, the analogue of the integral (1.1) is estimated using
the following.

Corollary 3.1 Let ε > 0, E : [0, 1] → C be a bounded, continuous function, and

φ j (x) :=
⎛
⎝

1
2 x

−1/2
(
log(1/x) + γ0 − log(8π) − π

2

) + ζ( 12 )2 + Re E((−1) j x)

(−1) j−1

2 x−1/2
(
log(1/x) + γ0 − log(8π) + π

2

) + Im E((−1) j x)

⎞
⎠ .

(3.2)

Let also u j := ( 1
(−1) j−1

)
. Then for some vector μ ∈ R

2, and all t ∈ R
2, we have

∫ 1

0
ei〈t,φ1(x)+φ2(T (x))〉 dμ(x)

= 1 + i〈t,μ〉 − 1

3 log 2

∑
j∈{1,2}

〈t,u j 〉2
∣∣log ∣∣〈t,u j 〉

∣∣∣∣3 + Oε(‖t‖2|log ‖t‖|2+ε).

Proof Let ε ∈ (0, 1). Using Corollary 2.3 with β = 1/2 and λ ∈ {0, 1}, and Proposi-
tion 2.1, we obtain

(x �→ ± 1
2 x

−1/2|log x |) ∈ G(2, |log|3, |log|2+ε),

(x �→ (γ0 − log(8π) + π
2 )x−1/2) ∈ G(2, |log|, |log|ε),

(x �→ Im E(±x)) ∈ G(3, 1, 1),
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as well as c∗(x �→ ± 1
2 x

−1/2|log x |) = − 1
3 log 2 . From Proposition 2.5 and the ensuing

remark, and using the property (3.1), we obtain for j ∈ {1, 2}
∫ 1

0
(ei〈t,φ j (x)〉 − 1) dμ(x) = i〈t,μ j 〉 + c∗〈t,u j 〉2

∣∣log ∣∣〈t,u j 〉
∣∣∣∣3

+Oε(‖t‖2|log ‖t‖|2+ε),

where μ1,μ2 ∈ R
2. On the other hand, we have

�(t) :=
∫ 1

0
(ei〈t,φ1(x)〉 − 1)(ei〈t,φ2(T (x))〉 − 1) dμ(x) =

∫ 1

0
(ei〈t,φ2(x)〉 − 1)Fx (t) dx,

where

Fx (t) = 1

log 2

∑
n≥1

ei〈t,φ1(1/(n+x))〉 − 1

(n + x)(n + x + 1)
.

By a Taylor expansion at order 1, we have |Fx (t)| 
 ‖t‖ uniformly in x , and therefore

|�(t)| 
 ‖t‖2
∫ 1

0

∥∥φ2(x)
∥∥ dx 
 ‖t‖2.

By (2.5), we deduce

∫ 1

0
ei〈t,φ1(x)+φ2(T (x))〉 dμ(x) = 1 +

∫ 1

0
(ei〈t,φ1(x)〉 + ei〈t,φ2(T (x))〉 − 2) dμ(x)

+O(‖t‖2),

whence the claimed estimate. ��

3.2 Moments of continued fraction coefficients

The next application we consider pertains to the moments functions 
λ of continued
fraction coefficients, where λ ≥ 0 is the order of the moment. The function of interest
to us here is

φλ(x) = �1/x�λ.

The case λ < 1/2 can be easily dealt with using Proposition 2.1, so we do not focus
on it here.

A first approach is to use Proposition 2.5 to approximate �1/x� by 1/x , and then
use Corollary 2.3. This leads to the following.

Corollary 3.2 Let λ ≥ 1/2. The function φλ given by φλ(x) = �1/x�λ satisfies the
following.
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– If λ = 1/2, then with c∗ = −1/(log 2), we have

I[φ1/2](t) = ic1t + c∗t2|log t | + Oε(t
2|log t |ε). (3.3)

– If λ > 1/2 and λ �= 1, then with c∗ = − exp(−π i/(2λ))Γ (1 − 1/λ)/ log 2, we
have

I[φλ](t) = (1λ<1)ic1t + c∗t1/λ + Oε(t
1/λ|log t |−1+ε)

When 1/2 ≤ λ < 1, we have c1 = ∫ 1
0 φλ(x) dμ(x).

Proof Wewriteφλ(x) = pλ(x)+rλ(x), where pλ(x) = x−λ and rλ(x) 
λ �1/x�λ−1.
By Proposition 2.1, we have rλ ∈ G(min(3, 1

λ−1/3 ), 1, 1).
We consider first the case λ > 1/2, λ �= 1. By Corollary 2.3, we have pλ ∈

G( 1
λ
, 1, |log|−1+ε). We deduce, by Proposition 2.5, that φλ ∈ G( 1

λ
, 1, |log|−1+ε), and

this yields the second and third cases.
If λ = 1/2, then Corollary 2.3 implies p1/2 ∈ G(2, |log|, |log|ε), and by Proposi-

tion 2.1, for some c ∈ R, we have

I[r1/2](t) = ict + O(t2)

On the other hand, since
∣∣(ei tp1/2(x) − 1)(ei tr1/2(x) − 1)

∣∣ 
 t2
∣∣p1/2(x)r1/2(x)∣∣ 
 t2,

we get

∫ 1

0
(ei tp1/2(x) − 1)(ei tr1/2(x) − 1) dμ(x) = O(t2).

By (2.5), we conclude (3.3) as claimed. ��
The case λ = 1 could be analyzed by the samemethod, but we chose to study it sep-

arately to obtain a more precise error term by another approach, using Proposition 2.2
directly. The associated Mellin transform G0(s) is related to the Riemann ζ -function.

Corollary 3.3 The function φ given by φ(x) = �1/x� satisfies

I[φ](t) = − i t
log 2

(
log t + γ0 − π i

2

) + Oε(t
2−ε).

Proof The integral (2.2) converges for all c < 1. A quick computation shows that an
analytic continuation of Gη(s) is given by

Gη(s) = exp(−s π i
2 (1 − η))

log 2

{
ζ(2 − s) + H(s)

}
,

where H(s) = ∑
n≥1 n

s(log(1 + 1
n(n+2) ) − 1

n2
) is analytic and uniformly bounded

in Re(s) ≤ 2 − ε. We have

∫
Re(s)=2−ε

∣∣Γ (−s)Gη(s)
∣∣|ds| 
ε 1 +

∫ ∞

0
|ζ(ε + iτ)| dτ

1 + τ 2

ε 1
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by the Stirling formula. The polar behavior (2.3) is given by

G0(s) = exp(−s π i
2 )

log 2

{
ζ(2 − s) + H(s)

} = exp(−s π i
2 )

log 2

{
1

1 − s
+ A + O(s − 1)

}

for s in a neighborhood of 1, where

A =
∑
n≥1

(
n log

(
1 + 1

n(n + 2)

)
− log

(
1 + 1

n

))

= − lim
N→∞

N∑
n=1

(
n log

(
1 + 1

n + 1

)
− (n − 1) log

(
1 + 1

n

))

= −1.

Applying Proposition 2.2 with δ = 1/2 and α = 1 yields the claimed result up to O(t).
Our more precise statement follows from noting that there is no branch cut along s ≥ 1
in this case, so that the residue theorem may be used. We obtain

Res
s=1

Γ (−s)G0(s)t
s = i t

log 2 (γ0 − π i
2 + log t),

whence the claimed estimate. One could go further, isolating a pole of order 2 at s = 2,
and this would give an error term O(t2|log t |). ��

3.3 Dedekind sums

The final example we discuss is related to Dedekind sums, for the definition of which
we refer to [2, Sect. 2.4]. The “period function” φ relevant to us here is

φ(x) = �1/x� − �1/T (x)�.

Comparedwith the case of x �→ �1/x� studied inCorollary3.3, the relevant exponentα
is again 1, but the leading term turns out to be t (the terms t log t vanish).

Corollary 3.4 The map φ on (0, 1) given by φ(x) = �1/x� − �1/T (x)� satisfies

I[φ](t) = − π

log 2
t + O(t2|log t |2).

Proof We consider

�(t) :=
∫ 1

0
(e−i t�1/T (x)� − 1)(ei t�1/x� − 1) dμ(x)

=
∫ 1

0
(e−i t�1/x� − 1)Fx (t) dx,
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with Fx (t) = 1
log 2

∑
n≥1

ei tn−1
(n+x)(n+1+x) . Since

∣∣eiu − 1
∣∣ 
 |u|1−1/|log t | for all u ∈ R,

we find

Fx (t) 
 t
∑
n≥1

1

n1+1/|log t | 
 t |log t |.

Similarly,

∫ 1

0

∣∣∣e−i t�1/x� − 1
∣∣∣ dx 
 t

∫ 1

0
x−1+1/|log t | dx 
 t |log t |.

We thus obtain �(t) = O((t log t)2). Using Corollary 3.3 with the improved error
term O(t2|log t |), (3.1) and (2.5), we deduce

∫ 1

0
ei t(�1/x�−�1/T (x)�) dμ(x) = 1 + 2Re I (t) + O((t log t)2),

where I (t) = ∫ 1
0 (ei t�1/x� − 1) dμ(x). Corollary 3.3 allows us to conclude. ��

Acknowledgements The authors thank the referee for his or her remarks and a careful reading of the
paper. This paper was partially written during a visit of S. Bettin at the Aix-Marseille University and a
visit of S. Drappeau at the University of Genova. The authors thank both Institution for the hospitality and
Aix-Marseille University and INdAM for the financial support for these visits.

References

1. Bettin, S.: On the reciprocity law for the twisted second moment of Dirichlet L-functions. Trans. Am.
Math. Soc. 368(10), 6887–6914 (2016)

2. Bettin, S., Drappeau, S.: Limit laws for rational continued fractions and value distribution of quantum
modular forms (preprint)

3. Bleistein, N., Handelsman, R.A.: Asymptotic Expansions of Integrals, 2nd edn, p. 863284. Dover, New
York (1986)

4. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn, p. 0270403.
Wiley, New York (1971)

5. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Elsevier, Amsterdam
(2007), Translated from the Russian

6. Ibragimov, I.A., Linnik, Yu.V.: Independent and stationary sequences of random variables. Wolters-
Noordhoff Publishing, Groningen (1971), With a supplementary chapter by I. A. Ibragimov and V. V.
Petrov, Translation from the Russian edited by J. F. C. Kingman, 0322926

7. López, J.L.: Asymptotic expansions ofMellin convolution integrals. SIAMRev. 50(2), 275–293 (2008)
8. Olver, F.W.J.: Asymptotics and special functions. AKP Classics, AK Peters, Ltd., Wellesley (1997),

Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)], 1429619
9. Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory. Graduate Studies in Math-

ematics, vol. 163, 3rd edn. American Mathematical Society, Providence (2015)
10. Vardi, I.: Dedekind sums have a limiting distribution. Int. Math. Res. Notices 1, 1–12 (1993)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Effective estimation of some oscillatory integrals related to infinitely divisible distributions
	Abstract
	1 Introduction
	2 Estimation of (1.1) in general
	2.1 Basic estimates
	2.1.1 Taylor estimate
	2.1.2 Using properties of the Mellin transform

	2.2 Addition

	3 Applications
	3.1 Central values of the Estermann function
	3.2 Moments of continued fraction coefficients
	3.3 Dedekind sums

	Acknowledgements
	References




