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Abstract
We present a practical framework to prove, in a simple way, two-term asymptotic
expansions for Fourier integrals

I() = f @9 _ 1)du(x),
R

where p is a probability measure on R and ¢ is measurable. This applies to many
basic cases, in link with Levy’s continuity theorem. We present applications to limit
laws related to rational continued fraction coefficients.
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1 Introduction

Let i be a probability measure on R, and ¢ : R — R be u-measurable. The present
paper is concerned with asymptotic formula for the Fourier integrals associated with ¢
near the origin,
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Tl(t) == / €™ —ydux) ¢ — 0). (1.1)

Such estimates are connected with the question of whether the push-forward mea-
sure ¢, (1) belongs to the bassin of attraction of a stable law, see Chapter 2 of [6].
Our interest in this question originates from this point of view, and more specifically
from the work [2] where we study the convergence towards stable laws of the value
distribution of invariants related to modular forms. In the setting of [2], the measure x
is the Gauss—Kuzmin distribution

dp(o) = — 3% 0,1
M(x)—m (x €10, 1D),

and this measure is invariant under the Gauss map 7' (x) = {1/x}, where {x} = x — [ x|
is the fractional part of x. More precisely, in [2], we are interested in Birkhoff sums

Y (I x) (I"=To--oT), (12)

j=1

where x varies among rationals and r > 0 is the length of the continued fractions
expansion of x. In the set of rationals we consider, these sums are found to typically
behave as sums of the shape

Do X,
j=1

where (X;)i1<j<, are ii.d. random variables distributed according to the Gauss—
Kuzmin measure n. Then effective estimates for the integral (1.1), in conjunction
with [2, Theorem 3.1] and the Berry—Esseen inequality [4, Eq. (XV1.3.13)] are used
to obtain uniform limit theorems for the rational Birkhoff sums (1.2).

We return to the setting where p is an arbitrary probability measure on R. Inte-
grals (1.1) are related to the methods of asymptotic analysis mentioned, e.g., in Chap-
ter 9 of the monograph [8]. When expressed as convolution integrals f L h(tx) f(x) dx,
they are referred to as A-transforms in [3], and are also the topic of interest of the recent
work [7]. The variety in assumptions and methods seems to prevent us from having a
uniform framework for estimating (1.1).

The goal of the present paper is to present and prove several basic estimates through
which one can give a streamlined and simple proof of an effective asymptotic expansion
of the integral (1.1), including the terms of interest in central limit theorems.

Definition 1.1 Given « € (0, 3] and two positive functions L, R defined in a neigh-

borhood of 0 in R, we denote by G(a, L, R) the set of functions ¢ : R — R such
that for some numbers ¢, ¢ € Rand ¢, € C, and all small enough ¢ > 0, there holds

Tlp1(t) = icit + cat® + cut“L(t) + O + 1*R(1)). (1.3)
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Oscillatory integrals related to infinitely divisible distributions

Remark - If R = O(t®) forany ¢ > O and o < 1, the term ¢ 7 in (1.3) is part of the
error term, and likewise for c272 if @ < 2.
— We will be interested in the largest one or two terms in the expansion (1.3). The
case « = 3, L = R = 1 corresponds to an order 2 Taylor expansion.
— Whenever the expansion (1.3) holds for ¢, we will denote the coefficients by ¢ (¢),

c2(9), cx(¢), respectively.

Theorem 1.2 (1) If [ |¢(x)|* du(x) < oo for some a € (0, 3], then ¢ € G(a, 1, 1).
(2) Suppose that du = f dv where v is the Lebesgue measure and f € C'([0, 1]).
Then for all a € R*, B > 3 and A > 0, the function

¢:(0,11 >R, ¢(x)=axPllogx|*,

belongs to g(%, llog|*B+Y |log|*BHv=142) for any ¢ € (0, 1], where v = 1
for B € {1/2, 1} and v = 0 otherwise.

(3) Given two measurable functions ¢y, ¢3, such that ¢; € G(aj, Lj, R;j) with
t2Ly() = O@*'Li(t)) ast — 0, then ¢ + ¢p2 € G(ay, Ly, Ry) for some
positive function Ry explicit in terms of Ly, Ly and R;.

The three items here are special cases of Proposition 2.1, Corollary 2.3, and Proposi-
tion 2.5 below, respectively. The coefficients ¢y, ¢», and ¢, and the function R, are
explicitly described in the precise versions below.

The proofs of all three result are rather short, but together they allow for a simple
proof of the expansion (1.1) in several concrete cases:

— In Corollary 3.1, we study a function ¢ : (0, 1] — R? having an asymptotic
behavior around 0 of the shape x~'/?|log x|. The ensuing estimate we obtain
is used in [2, Theorem 2.1] to deduce a central limit theorem for central val-
ues {D(1/2,x),x € QN (0, 1]} of the analytic continuation of the Estermann
function

D(s, x) = Z @em”x (Re(s) > 1), (1.4)

s
n>1

where 7 is the divisor function.

— In Corollaries 3.3 and 3.2, we study the functions of the shape ¢ (x) = |1 /xjk
where A > 1/2. These functions occur when studying the values {X; (x), x €
Q N (0, 1]} of the moments of the continued fractions coefficients,

.
1
D) =) d} <x=[0;a1,.-.,ar] =—.a, > 1),
=1 a1+ o3

see [2, Theorems 2.5 and 9.4]. This, in turn, is applied to obtain a law of large
numbers for the values of the Kashaev invariants of the 41 knot [2, Corollary 2.6].
— In Corollary 3.4, we study the function ¢ on (0, 1] given by ¢(x) = [1/x] —
[1/T(x)], where T : (0,1] — (0, 1], T(x) = {1/x} is the Gauss map. The
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estimate we obtain is used in [2, Theorem 2.7] to obtain an independent proof,
using dynamical systems, of a theorem of Vardi [10] on the convergence to a
Cauchy law of the values of Dedekind sums.

2 Estimation of (1.1) in general

2.1 Basic estimates

2.1.1 Taylor estimate

The first and simplest method to obtain an estimate for (1.1) is to insert and integrate
a Taylor expansion for the exponential.

Proposition 2.1 Assume that for some o € (0, 3], we have

K:/WMWMM<m-
Then ¢ € G(a, 1, 1), and more precisely
Z[P)(t) = icit + cat> + O(Kt%) 2.1)

withcy = [¢dpifa > 1, and ¢ = —% [1¢1>dp if @ > 2. The implied constant is
absolute.

. - Nk
Proof We use the bound |e'* — ZO§k<a %| < |u|® with u = t¢(x), and integrate
over x. O

Although it will not be useful for us here, we note that in the precise bound (2.1), the
value of « could be taken as a function of ¢. For example, if i is the Lebesgue measure
on (0,1) and ¢(x) = 1/x, we can take « = 1 — 1/|log?| and obtain Z[¢](t) =
O(t|logt|).

2.1.2 Using properties of the Mellin transform

When the moment | |¢|* du diverges at some particular o, we can often extract a useful
expansion from the Cauchy formula and the polar behavior of the Mellin transform.
Forx e R,s € Cand 5 € [0, 1], let

b5 (¥) = 1) 201 () exp(—=s G (1 — ) sgnp (x)),  hs(x) := s 0(x).

Note that for k € N. g, ¢x(x) = (—id)(x))k. Define further

Gr(5) = [ ety dnce)
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Oscillatory integrals related to infinitely divisible distributions

Proposition2.2 Let o« € (0,3), p € (0, 1), §,n0 > 0 and & € R. Assume that for
some ¢ > 0, we have

/ (P + 1)) du(x) < oo 2.2
¢ (x)#0

and that the functions G (s) for n € [0, nol, initially defined for Re(s) € (—c, ¢), can
be analytically continued to the set

{[s€C,0<Re(s) <a+3,s¢[a,a+dl}.

Assume further that
sup / reR [T (=)Gy(s)] de < oo,
0=<n=no s=a+8+it

and that there is an open neighborhood V of [a, o + 8] for which

(@—$)5Gos) =0+ O(s —al®), seV~la a+s], Re(s) <a—+3.
2.3)

Then, ¢ € G(a, |10g|‘§_1+”“, |10g|5_1+“0‘_p), where vy = lifa = 1,2 and v, =0
otherwise, and with coefficients given by

—o/T¢E+1), a=1,
c=iGo(Difa>1, c2=131GoQ@) ifa>2, ci={to/TE+1D), a=2
o5, a ¢ {1.2).

(2.4)

Proof We write
gl + 1 = fe”q’m du(x) = Jo + J- + Jo,

where J1 corresponds to the part of the integral restricted to ¢ > 0.
For all & € (0, 51o), define

Ji(e) == / e(TEHDIPW q 1 (x), J_(e) = f TN 41 (x).
¢ (x)>0 ¢ (x)<0

By dominated convergence, we have J := lim,_, g+ J+(¢), and similarly for J_. We
use the Mellin transform formula for the exponential
1 —c¢/2+i00
eV =-— I(=s)lyle’ 8™ ds
2mi ) —cpa—ico
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valid for Re(y) > 0, see [5, Eq. 17.43.1] (the extension to non-real y is straightforward
by the Stirling formula [5, Eq. 8.327.1]). Inserting this in J1 (&), we obtain

1 —c/24ioc0
Ji(e)+J_(e) = 37 I'(=$)Gy()|1 +iel’t® ds,
i

—c/2—ic0
where n = % arctan e < i—s < no. We move the contour forward to Re(s) = « + 6.
The simple pole at s = O contributes | B(1)£0 du(x), and therefore by adding the
contribution from Jy, we get

1
Jo+Ji(e)+J-(e) =14+ R+ — L(=)Gy()* |1 +igl’ ds
2mi H(a,0+38)

1
+ — F(—S)G,,(S)I‘YH +iel®ds,
278 JRe(s)=a+s

where R consists of the contribution of the residues at 1 (if « > 1) and 2 (if @ > 2).
Here H (o, o + §) is a Hankel contour, going from o + § — i0 to o + § + i0 passing
around « from the left. The last integral is bounded by the triangle inequality, using
our first hypothesis on G, which gives

1
— [(=5)Gy()t*|1 +iel* ds <« 197,
2mi Re(s)=a+$

uniformly in ¢. Passing to the limit ¢ — 0, there remains to prove

1
— I'(=$)Go(s)t* ds = c*t“|10gt|'§_1+v’1 + O(t“|10gt|s_1+“‘*_p).
271 JH(w,a+6)

This is done by using our second hypothesis along with a standard Hankel contour
integration argument; we refer to, e.g., Corollary I1.0.18 of [9] for the details. O

An important special case is the following.

Corollary 2.3 Let u be defined on [0, 1] by du(x) = f(x)dx where f € C'([0, 1]).
Leta € R~ {0}. Forall B > % A >0, and ¢ given by

¢ (x) = ax Pllog x|*
one has ¢ € G(1/8, |10g|”’3+“‘/f‘, |10g|k/ﬂ+“1//3_1+5)f0r any ¢ € (0, 1) and with

—misgna — -1 =
jape s [mAH DL A=

C*=f(O)WX @r+2)71, B=1/2,
r1/p), B ¢{1,1/2}.

andcy = [¢duif B <1and02:—%f|¢|2duif,3 < %
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Oscillatory integrals related to infinitely divisible distributions

Proof First, we write diu(x) = f(0) x (x) dx 4+ xg(x) dx, where yx is the characteristic
function of the interval [0, 1] and g € C([0, 1]). For the contribution of x dx we apply
Proposition 2.2 with any fixedc < 1/8, ¢ =1/8,& =1/ + 1, any fixed p € (0, 1)
and § > 0. By [5, 4.272.6], for Re(s) < 1/B and n € [0, 1] we have

i 1
L
Gys) =e 21 ">Sg“<“>|a|S/ x P log x ** dx
0

T'(s+1)

_ T U@ s .
(1 _ ﬂs))hv-ﬁ—l

Notice also that by Stirling’s formula G, (s) <« e”(liTn)|T||t|’1/2 as |t| = |Ims| —
00, so that in any case, I"'(—s)G,(s) < |7|~1Re) Therefore, the hypotheses of
Proposition 2.2 are easily verified with

—misgna F()\‘/IB + 1)
0= |a|1/ﬁ€' 26 W

Thus,

I
/ "W — 1)dx = itc] + cht* + cut VPllogt MBS 4 O (11 log 1| BTVVE=P)
0

with coefficients as given in (2.4) with Go(1) = —i f ¢x dx and Go(2)
— f ¢2 x dx. Finally, as in Proposition 2.1, we deduce

/(eit¢(x) — Dxg(x)dx = ic/l/t + C/z/lz + O(Kta/)

for any 0 < o' < min(3, %) and with ¢/ = [¢(x)xg(x)dx if «’ > 1 and ¢§ =
—% f¢(x)2xg(x) dx if o’ > 2. The result then follows. O

2.2 Addition

Lemma 2.4 For j € {1,2}, let §;(x) = e"'%/™) — 1. Then

Zi61+ 6210) = Zi6110) + T16200) + [ 8108200 dmo)
=Zlei1) + Ziga1) + 0 [T [ReZlgsl0]'?)  @5)

Je{l.2}

Proof The first equation is simply the relation ¢/!(?1)+$2(0) _ 1 = §;(x) + 8, (x) +
81(x)82(x) integrated over x. The last term is bounded using the Cauchy—Schwarz
inequality
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2
( / 8108l dew) = ] / 8,0 do)
ie{l,2)

and expanding the square on the right-hand side. O

Proposition 2.5 For j € {1,2}, leta; € (0, 2], let L j, R be positive functions defined
on a neighborhood of 0 in R%, and ¢; € G(aj, L;, Rj). If a1 < o, and under the
following assumptions:

- R;jt),Lj(t)y =t°Dast — 0,

- Rj(#) = O(L;®)),
— 2= 0@ Li(1)),

we have
Ry ifar < ay,
o1 +¢2 G, L1, Ry), Ry= R +Lr+LiL ifoap =0y <2,
Ri+Ly++/Li(WLy+1) ifay =ar =2.
Moreover,

c1(¢1 + ¢2) = c1(¢1) + c1(92),
C*(d)l + ¢2) = C*(¢l)~

Proof We use Lemma 2.4; when computing the real partin (2.5), the termic ¢ vanishes.
O

Remark Note that using this result might induce a slight quantitative loss in the two
cases when o; = ap. What is gained at this price is that we are only required to study
each ¢; separately, which simplifies the analysis.

We also remark that this estimate is useful only when the term ¢»£? is not relevant
in (1.3). In the complementary case, Proposition 2.1 can be used, although the ensuing
error term will typically be worse than optimal by a factor of [log¢].

It is straightforward to generalize Proposition 2.5, affecting to each ¢; a different
value of the frequency: under the same hypotheses and notations, and additionally
that L ;, R; tend monotonically to 400 at 0,

/ /NP1 HRD () = 1+ iey (i) + ier (@) + e Li (1)
+ 02 + 1§ Ry (11)),
where c1, ¢, are as in the conclusion of Proposition 2.5, and t = max{z, 1}
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Oscillatory integrals related to infinitely divisible distributions

3 Applications

We now describe the applications we will be interested in. The measure is the Gauss—
Kuzmin distribution

du(r) = — & [0, 1]
M(X)—m (x € [0, 1]).

The measure u is invariant under the Gauss map 7 (x) = {1/x} on (0, 1), in particular,
Zlg o T1(t) = ZI$](1). (3.1
3.1 Central values of the Estermann function

The first application we discuss is the “period function” ¢ : R — C associated with
the Estermann function (1.4), namely

¢(x) = D(3,1/x) — D(3,x),

initially defined in Q N (0, 1]. By [1], this function can be extended to a continuous
function on (0, 1], more precisely given by an expression of the shape (3.2) below.
Interpreting ¢ to be R?-valued, the analogue of the integral (1.1) is estimated using
the following.

Corollary 3.1 Lete > 0, £ : [0, 1] — C be a bounded, continuous function, and

3x712(log(1/x) + yo — log(87) — 5) + ¢(3)? + Re E((—1)7x)
¢j(x) = :

S 12 (log(1/x) + yo — log(87) + 3) + Im E((~1)/x)
3.2)

Let also uj := ((_11),-_1 ) Then for some vector p € R?, and all t € R?, we have

1
/ i (b1 D+E2TON) g (1)
0

3
Y (tu))?[log [t w))||” + Ot log [I€]1>F4).
Je{1.2}

. 1
=it = 3log?2

Proof Let ¢ € (0, 1). Using Corollary 2.3 with 8 = 1/2 and A € {0, 1}, and Proposi-
tion 2.1, we obtain

(x > £ 2x 72 log x|) € G(2, logl, [log|***),

(x = (v —log(8m) + T)x~ /%) € G(2, |log|, |log|*),
(x—Im&(£x)) € GG3, 1, 1),
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as well as ¢, (x — :I:%x’lﬂllogxl) = —@. From Proposition 2.5 and the ensuing

remark, and using the property (3.1), we obtain for j € {1, 2}

1 .
/0 (10D — 1) dp(x) = it )+ cult, u;)log it )

+0: (IIt]*log I£]l]*5),

where iy, i1, € R?. On the other hand, we have

1 1
A(t) := / (ei(t,¢1(x)) _ 1)(ei(t‘¢2(T(x))) — Ddp@x) = / (ei(t,¢2(x)) — 1) Fy(t) dx,
0 0

where

| i (L6 (1/(4x) _

Fy(t) = .
® log2n>1 m+x)n+x+1)

By a Taylor expansion at order 1, we have | Fy (t)| < ||t|| uniformly in x, and therefore

1
AWD)] < ||t||2/0 [5(0)] dx < 112

By (2.5), we deduce

1 1
/ LB 02T 4 (1) = 1+/ (1) | i tO2TCN) _ 2) dyy(x)
0 0
+O(ItI?),

whence the claimed estimate. |

3.2 Moments of continued fraction coefficients

The next application we consider pertains to the moments functions X, of continued
fraction coefficients, where A > 0 is the order of the moment. The function of interest
to us here is

¢ (x) = [1/x]".

The case & < 1/2 can be easily dealt with using Proposition 2.1, so we do not focus
on it here.

A first approach is to use Proposition 2.5 to approximate [ 1/x| by 1/x, and then
use Corollary 2.3. This leads to the following.

Corollary 3.2 Let & > 1/2. The function ¢, given by ¢, (x) = |1/x]* satisfies the
following.
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— If x = 1/2, then with c¢,, = —1/(log?2), we have
Zlp121(t) = icyt + C*t2|10gt| + 05(t2|10gt|5). (3.3)

—Ifx > 1/2 and & # 1, then with c, = —exp(—mi/(2A)'(1 —1/X)/log?2, we
have

Tl )(t) = (ho)icrr + ext'/* 4+ 0c (11 [log 1] 717

When 1/2 < A < 1, we have ¢1 = fol dn(x) dp(x).

Proof We write ¢; (x) = pj (x)+7;.(x), where p; (x) = x " and r; (x) <. I_I/xj)‘_l.
By Proposition 2.1, we have r) € G(min(3, )»—1_1/3)’ 1,1).

We consider first the case A > 1/2, A # 1. By Corollary 2.3, we have p, €
G(+, 1, |log|~'¢). We deduce, by Proposition 2.5, that ¢; € g(i, 1, log|~'*%), and
this yields the second and third cases.

If A = 1/2, then Corollary 2.3 implies p1,» € G(2, [log|, [log|®), and by Proposi-
tion 2.1, for some ¢ € R, we have

Tlrip)t) = ict + 0%

On the other hand, since |(e/P12() — 1)(e/™120) — 1)| « 12| p1p(X)r12(x)] < 12,
we get

1
/0 P12 — 1)(E2M 1) du(x) = 0(r?).

By (2.5), we conclude (3.3) as claimed. m]

The case A = 1 could be analyzed by the same method, but we chose to study it sep-
arately to obtain a more precise error term by another approach, using Proposition 2.2
directly. The associated Mellin transform G (s) is related to the Riemann ¢ -function.

Corollary 3.3 The function ¢ given by ¢ (x) = | 1/x] satisfies

Z[1(1) = — gz (log 1 +y0 = %) + 0: ().
Proof The integral (2.2) converges for all ¢ < 1. A quick computation shows that an
analytic continuation of G, (s) is given by

exp(—sZ (1 — 1))

Gnls) = log?2

[c@—s)+ H()},

where H(s) = an] n®(log(l + n(n—1+2)) - n%) is analytic and uniformly bounded
in Re(s) < 2 — . We have

dr
1412

/ |7 (—=$)Gy(9)]lds| K¢ 1+/ (e +iT)] < 1
Re(s)=2—¢ 0

@ Springer



S.Bettin et al.

by the Stirling formula. The polar behavior (2.3) is given by

i
_ exp(—s5

Go(s) = log2 {c@=-9)+H®} =

exp(—s%i { 1

A+ 0@ —1
log2 +A+O0C(s )}

1—s
for s in a neighborhood of 1, where

1 1
A:Z(nlog<l+m> —10g<1+;>>

n>1

N

1 1
=— 1 | I+—— ) —-(m—-1)1 14+ —
N1—r>noo <n0g< +n+l> = )og< +”>>

n=1
=—1.
Applying Proposition 2.2 with § = 1/2 and ¢ = 1 yields the claimed result up to O(¢).
Our more precise statement follows from noting that there is no branch cut along s > 1
in this case, so that the residue theorem may be used. We obtain

Res I'(=5)Go($)r* = iz (o — & +log),

whence the claimed estimate. One could go further, isolating a pole of order 2 ats = 2,
and this would give an error term 0(t2 |logt]). O

3.3 Dedekind sums

The final example we discuss is related to Dedekind sums, for the definition of which
we refer to [2, Sect. 2.4]. The “period function” ¢ relevant to us here is

¢(x) = L1/x] = [1/T(x)].

Compared with the case of x — | 1/x ] studiedin Corollary 3.3, the relevant exponent o
is again 1, but the leading term turns out to be ¢ (the terms ¢ log ¢ vanish).

Corollary 3.4 The map ¢ on (0, 1) given by ¢ (x) = [1/x] — | 1/T (x)] satisfies
T
TIPI(1) = ==t + O(1*|logt]?).
og?2
Proof We consider

1
A1) = / (e TN — 1y — 1) dp(x)
0

1 .
= f e "/ — 1) F(r) dx,
0

@ Springer



Oscillatory integrals related to infinitely divisible distributions

. itn _ . . _
with Fx (1) = @ D ons1 m Since |e/ — 1| < |ul" 1/logtl for all u € R,
we find

1
Fe®) 1) —or < tllogel.
n>1
Similarly,
1, 1
/ ‘e_”U/” - 1‘dx <<z/ X~ oetl gy« fllog .
0 0

We thus obtain A(r) = O((tlogt)?). Using Corollary 3.3 with the improved error
term O(t2|log t]), (3.1) and (2.5), we deduce

1
/ T WAI=/TON g (x) = 1+ 2Re (1) + O((t log1)?),
0

where I(t) = fol (e L/x] — 1) dp(x). Corollary 3.3 allows us to conclude. m]
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