The initiation of fluid-induced fracture in formations of permeable geomaterials subjected to quasi-stationary flow processes (drained response) can be strongly affected by Biot's coefficient and the size of the formation. The aim of this paper is to analyse the influence of these parameters on the initial fracture process of a thick-walled hollow permeable sphere subjected to fluid injection in the hole. Assuming that fracture patterns are distributed uniformly during the hardening stage of the fracture initiation process, the coupled fluid-solid problem is described by a nonlinear ordinary differential equation, which is solved numerically by means of finite differences combined with shooting and Newton methods. The finite difference code has also been validated in the elastic range, i.e., before initiation of fracture, against an original closed-form analytical solution of the above differential equation. The results show that the nominal strength of the sphere increases with increasing Biot's coefficient and decreases with increasing size.

Initiation of fluid-induced fracture in a thick-walled hollow permeable sphere

Gallipoli D.
2019-01-01

Abstract

The initiation of fluid-induced fracture in formations of permeable geomaterials subjected to quasi-stationary flow processes (drained response) can be strongly affected by Biot's coefficient and the size of the formation. The aim of this paper is to analyse the influence of these parameters on the initial fracture process of a thick-walled hollow permeable sphere subjected to fluid injection in the hole. Assuming that fracture patterns are distributed uniformly during the hardening stage of the fracture initiation process, the coupled fluid-solid problem is described by a nonlinear ordinary differential equation, which is solved numerically by means of finite differences combined with shooting and Newton methods. The finite difference code has also been validated in the elastic range, i.e., before initiation of fracture, against an original closed-form analytical solution of the above differential equation. The results show that the nominal strength of the sphere increases with increasing Biot's coefficient and decreases with increasing size.
File in questo prodotto:
File Dimensione Formato  
Grassl, Jirásek and Gallipoli (2019).pdf

accesso aperto

Tipologia: Documento in Pre-print
Dimensione 542.01 kB
Formato Adobe PDF
542.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/997759
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact