Pisot numbers are real algebraic integers bigger than 1, whose other conjugates all have modulus smaller than 1. In this paper we deal with the algorithmic problem of finding the smallest Pisot unit generating a given number field. We first solve this problem in all real fields, then we consider the analogous problem involving the so called complex Pisot numbers and we solve it in all number fields that admit such a generator, in particular this includes all fields without CM.
Pisot unit generators in number fields
Veneziano F.
2018-01-01
Abstract
Pisot numbers are real algebraic integers bigger than 1, whose other conjugates all have modulus smaller than 1. In this paper we deal with the algorithmic problem of finding the smallest Pisot unit generating a given number field. We first solve this problem in all real fields, then we consider the analogous problem involving the so called complex Pisot numbers and we solve it in all number fields that admit such a generator, in particular this includes all fields without CM.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Pubblicazione-6.pdf
accesso chiuso
Descrizione: Articolo pubblicato
Tipologia:
Documento in versione editoriale
Dimensione
414.67 kB
Formato
Adobe PDF
|
414.67 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.