Background: Infections due to multidrug-resistant (MDR) bacteria are increasing both in hospitals and in the community and are characterized by high mortality rates. New molecules are in development to face the need of active compounds toward resistant gram-positive and gram-negative pathogens. In particular, the Infectious Diseases Society of America (IDSA) has supported the initiative to develop ten new antibacterials within 2020. Principal targets are the so-called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae).Purpose: To review the characteristics and the status of development of new antimicrobials including new cephalosporins, carbapenems, beta-lactamase inhibitors, aminoglycosides, quinolones, oxazolidones, glycopeptides, and tetracyclines.Conclusions: While numerous new compounds target resistant gram-positive pathogens and have been approved for clinical use, very few new molecules are active against MDR gram-negative pathogens, especially carbapenemase producers. New glycopeptides and oxazolidinones are highly efficient against methicillin-resistant S. aureus (MRSA), and new cephalosporins and carbapenems also display activity toward MDR gram-positive bacteria. Although new cephalosporins and carbapenems have acquired activity against MRSA, they offer few advantages against difficult-to-treat gram-negatives. Among agents that are potentially active against MDR gram-negatives are ceftozolane/tazobactam, new carbapenems, the combination of avibactam with ceftazidime, and plazomicin. Since a relevant number of promising antibiotics is currently in development, regulatory approvals over the next 5 years are crucial to face the growing threat of multidrug resistance.

Development of novel antibacterial drugs to combat multiple resistant organisms

Bassetti M.;
2015-01-01

Abstract

Background: Infections due to multidrug-resistant (MDR) bacteria are increasing both in hospitals and in the community and are characterized by high mortality rates. New molecules are in development to face the need of active compounds toward resistant gram-positive and gram-negative pathogens. In particular, the Infectious Diseases Society of America (IDSA) has supported the initiative to develop ten new antibacterials within 2020. Principal targets are the so-called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae).Purpose: To review the characteristics and the status of development of new antimicrobials including new cephalosporins, carbapenems, beta-lactamase inhibitors, aminoglycosides, quinolones, oxazolidones, glycopeptides, and tetracyclines.Conclusions: While numerous new compounds target resistant gram-positive pathogens and have been approved for clinical use, very few new molecules are active against MDR gram-negative pathogens, especially carbapenemase producers. New glycopeptides and oxazolidinones are highly efficient against methicillin-resistant S. aureus (MRSA), and new cephalosporins and carbapenems also display activity toward MDR gram-positive bacteria. Although new cephalosporins and carbapenems have acquired activity against MRSA, they offer few advantages against difficult-to-treat gram-negatives. Among agents that are potentially active against MDR gram-negatives are ceftozolane/tazobactam, new carbapenems, the combination of avibactam with ceftazidime, and plazomicin. Since a relevant number of promising antibiotics is currently in development, regulatory approvals over the next 5 years are crucial to face the growing threat of multidrug resistance.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/995855
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 42
social impact