We propose a calorimetric measurement of work in a quantum system. As a physical realization, we consider a superconducting two-level system, a Cooper-pair box, driven by a gate voltage past an avoided level crossing at charge degeneracy. We demonstrate that, with realistic experimental parameters, the temperature measurement of a resistor (environment) can detect single microwave photons emitted or absorbed by the two-level system. This method would thus be a way to measure the full distribution of work in repeated measurements, and to assess the quantum fluctuation relations.

Calorimetric measurement of work in a quantum system

Solinas P.;
2013-01-01

Abstract

We propose a calorimetric measurement of work in a quantum system. As a physical realization, we consider a superconducting two-level system, a Cooper-pair box, driven by a gate voltage past an avoided level crossing at charge degeneracy. We demonstrate that, with realistic experimental parameters, the temperature measurement of a resistor (environment) can detect single microwave photons emitted or absorbed by the two-level system. This method would thus be a way to measure the full distribution of work in repeated measurements, and to assess the quantum fluctuation relations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/984476
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 83
social impact