Heme oxygenase 1 (HO-1) plays a pivotal role in preventing cell damage. Indeed, through the antioxidant, antiapoptotic and anti-inflammatory properties of its metabolic products, it favors cell adaptation against different stressors. However, HO-1 induction has also been related to the gain of resistance to therapy in different types of cancers and its involvement in cancer immune-escape has been hypothesized. We have investigated the role of HO-1 expression in Vemurafenib-treated BRAF(V600) melanoma cells in modulating their susceptibility to NK cell-mediated recognition. Different cell lines, isolated in house from melanoma patients, have been exposed to 1-10 mu M PLX4032, which efficiently reduced ERK phosphorylation. In three lines, Vemurafenib was able to induce only a limited decrease in cell viability, while HO-1 expression was upregulated. HO-1 silencing/inhibition was able to induce a further significant reduction of Vemurafenib-treated melanoma viability. Moreover, while NK cell degranulation and killing activity were decreased upon interaction with melanoma exposed to Vemurafenib, HO-1 silencing was able to completely restore NK cell ability to degranulate and kill. Furthermore, melanoma cell treatment with Vemurafenib downregulated the expression of ligands of NKp30 and NKG2D activating receptors, and HO-1 silencing/inhibition was able to restore their expression. Our results indicate that HO-1 downregulation can both improve the efficacy of Vemurafenib on melanoma cells and favor melanoma susceptibility to NK cell-mediated recognition and killing.

HO-1 downregulation favors BRAFV600 melanoma cell death induced by Vemurafenib/PLX4032 and increases NK recognition

Furfaro A.;Ottonello S.;LOI, GIULIA;Spagnolo F.;Marinari U. M.;Pronzato M. A.;Mingari M. C.;Pietra G.;Nitti M.
2019-01-01

Abstract

Heme oxygenase 1 (HO-1) plays a pivotal role in preventing cell damage. Indeed, through the antioxidant, antiapoptotic and anti-inflammatory properties of its metabolic products, it favors cell adaptation against different stressors. However, HO-1 induction has also been related to the gain of resistance to therapy in different types of cancers and its involvement in cancer immune-escape has been hypothesized. We have investigated the role of HO-1 expression in Vemurafenib-treated BRAF(V600) melanoma cells in modulating their susceptibility to NK cell-mediated recognition. Different cell lines, isolated in house from melanoma patients, have been exposed to 1-10 mu M PLX4032, which efficiently reduced ERK phosphorylation. In three lines, Vemurafenib was able to induce only a limited decrease in cell viability, while HO-1 expression was upregulated. HO-1 silencing/inhibition was able to induce a further significant reduction of Vemurafenib-treated melanoma viability. Moreover, while NK cell degranulation and killing activity were decreased upon interaction with melanoma exposed to Vemurafenib, HO-1 silencing was able to completely restore NK cell ability to degranulate and kill. Furthermore, melanoma cell treatment with Vemurafenib downregulated the expression of ligands of NKp30 and NKG2D activating receptors, and HO-1 silencing/inhibition was able to restore their expression. Our results indicate that HO-1 downregulation can both improve the efficacy of Vemurafenib on melanoma cells and favor melanoma susceptibility to NK cell-mediated recognition and killing.
File in questo prodotto:
File Dimensione Formato  
Furfaro_et_al-2019-International_Journal_of_Cancer.pdf

accesso chiuso

Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/977291
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact