In this work we introduce and study the strong generalized minimum label spanning tree (GMLST), a novel optimization problem defined on edge-labeled graphs. Given a label set associated to each edge of the input graph, the aim is to look for the spanning tree using the minimum number of labels. Differently from the previously introduced GMLST problem, including a given edge in the solution means that all its labels are used. We present a mathematical formulation, as well as three heuristic approaches to solve the problem. Computational results compare the performances of the proposed algorithms.

Heuristics for the strong generalized minimum label spanning tree problem

Cerrone C.;
2019-01-01

Abstract

In this work we introduce and study the strong generalized minimum label spanning tree (GMLST), a novel optimization problem defined on edge-labeled graphs. Given a label set associated to each edge of the input graph, the aim is to look for the spanning tree using the minimum number of labels. Differently from the previously introduced GMLST problem, including a given edge in the solution means that all its labels are used. We present a mathematical formulation, as well as three heuristic approaches to solve the problem. Computational results compare the performances of the proposed algorithms.
File in questo prodotto:
File Dimensione Formato  
net.21882.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 747.15 kB
Formato Adobe PDF
747.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/975046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact