This paper describes a simplified framework to create dynamic models of SOFC/Gas Turbine Hybrid Systems. After some physical considerations on global SOFC/GT structure, the work focuses on the modelling approach. It embodies some empirical parameters, which can be derived from operating data or detailed simulation analysis. The framework results in a hybrid model – partly physics-based, partly data-driven – which covers a large range of working conditions. The resulting simplicity and robustness of the approach allows the potential adoption in different on-field applications such as fast response models for operators, control system development and validation, model-based controllers, as well as for dynamic performance evaluations. This last application is shown at the end of the paper, where the response of the model is compared with a real Cyber-Physical SOFC/Gas Turbine Emulator installed at the National Energy Technology Laboratory (NETL), Morgantown (West Virginia, USA).
SOFC/Gas Turbine Hybrid System: A simplified framework for dynamic simulation
Rossi I.;Traverso A.;Tucker D.
2019-01-01
Abstract
This paper describes a simplified framework to create dynamic models of SOFC/Gas Turbine Hybrid Systems. After some physical considerations on global SOFC/GT structure, the work focuses on the modelling approach. It embodies some empirical parameters, which can be derived from operating data or detailed simulation analysis. The framework results in a hybrid model – partly physics-based, partly data-driven – which covers a large range of working conditions. The resulting simplicity and robustness of the approach allows the potential adoption in different on-field applications such as fast response models for operators, control system development and validation, model-based controllers, as well as for dynamic performance evaluations. This last application is shown at the end of the paper, where the response of the model is compared with a real Cyber-Physical SOFC/Gas Turbine Emulator installed at the National Energy Technology Laboratory (NETL), Morgantown (West Virginia, USA).File | Dimensione | Formato | |
---|---|---|---|
2019-TPG-6.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
1.83 MB
Formato
Adobe PDF
|
1.83 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.