The optical transfer function (OTF) is widely used to compare the performance of different optical systems. Conventionally, the OTF is normalized to unity for zero spatial frequency, but in some cases it is better to consider the unnormalized OTF, which gives the absolute value of the image signal. Examples are in confocal microscopy and image scanning microscopy, where the signal level increases with pinhole or array size. Comparison of the respective unnormalized OTFs gives useful insight into their relative performance. The significance of other properties of the general OTF is discussed.

Interpretation of the optical transfer function

Castello M.;Vicidomini G.;Diaspro A.
2016-01-01

Abstract

The optical transfer function (OTF) is widely used to compare the performance of different optical systems. Conventionally, the OTF is normalized to unity for zero spatial frequency, but in some cases it is better to consider the unnormalized OTF, which gives the absolute value of the image signal. Examples are in confocal microscopy and image scanning microscopy, where the signal level increases with pinhole or array size. Comparison of the respective unnormalized OTFs gives useful insight into their relative performance. The significance of other properties of the general OTF is discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/970290
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 26
social impact