Body–machine interfaces (BMIs) provide a non-invasive way to control devices. Vibrotactile stimulation has been used by BMIs to provide performance feedback to the user, thereby reducing visual demands. To advance the goal of developing a compact, multivariate vibrotactile display for BMIs, we performed two psychophysical experiments to determine the acuity of vibrotactile perception across the arm. The first experiment assessed vibration intensity discrimination of sequentially presented stimuli within four dermatomes of the arm (C5, C7, C8, and T1) and on the ulnar head. The second experiment compared vibration intensity discrimination when pairs of vibrotactile stimuli were presented simultaneously vs. sequentially within and across dermatomes. The first experiment found a small but statistically significant difference between dermatomes C7 and T1, but discrimination thresholds at the other three locations did not differ. Thus, while all tested dermatomes of the arm and hand could serve as viable sites of vibrotactile stimulation for a practical BMI, ideal implementations should account for small differences in perceptual acuity across dermatomes. The second experiment found that sequential delivery of vibrotactile stimuli resulted in better intensity discrimination than simultaneous delivery, independent of whether the pairs were located within the same dermatome or across dermatomes. Taken together, our results suggest that the arm may be a viable site to transfer multivariate information via vibrotactile feedback for body–machine interfaces. However, user training may be needed to overcome the perceptual disadvantage of simultaneous vs. sequentially presented stimuli.

Spatial and temporal influences on discrimination of vibrotactile stimuli on the arm

Casadio M.;
2019-01-01

Abstract

Body–machine interfaces (BMIs) provide a non-invasive way to control devices. Vibrotactile stimulation has been used by BMIs to provide performance feedback to the user, thereby reducing visual demands. To advance the goal of developing a compact, multivariate vibrotactile display for BMIs, we performed two psychophysical experiments to determine the acuity of vibrotactile perception across the arm. The first experiment assessed vibration intensity discrimination of sequentially presented stimuli within four dermatomes of the arm (C5, C7, C8, and T1) and on the ulnar head. The second experiment compared vibration intensity discrimination when pairs of vibrotactile stimuli were presented simultaneously vs. sequentially within and across dermatomes. The first experiment found a small but statistically significant difference between dermatomes C7 and T1, but discrimination thresholds at the other three locations did not differ. Thus, while all tested dermatomes of the arm and hand could serve as viable sites of vibrotactile stimulation for a practical BMI, ideal implementations should account for small differences in perceptual acuity across dermatomes. The second experiment found that sequential delivery of vibrotactile stimuli resulted in better intensity discrimination than simultaneous delivery, independent of whether the pairs were located within the same dermatome or across dermatomes. Taken together, our results suggest that the arm may be a viable site to transfer multivariate information via vibrotactile feedback for body–machine interfaces. However, user training may be needed to overcome the perceptual disadvantage of simultaneous vs. sequentially presented stimuli.
File in questo prodotto:
File Dimensione Formato  
Shah2019_Article_SpatialAndTemporalInfluencesOn.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/960339
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact