The development of large area cryogenic light detectors is one of the priorities of next generation bolometric experiments searching for neutrinoless double beta decay. The simultaneous read-out of the heat and light signals enables particle identification, provided that the energy resolution and the light collection are sufficiently high. CALDER (Cryogenic wide-Area Light Detectors with Excellent Resolution) is developing phonon-mediated silicon light detectors using KIDs, with the goal of sensing an area of 5 × 5 cm2 with a resolution of 20 eV RMS. We present the latest results obtained with aluminum chips and with newly developed multi-layer titanium–aluminum chips featuring a remarkable sensitivity.

Status of the CALDER project: Cryogenic light detectors for background suppression

Di Domizio S.;
2019-01-01

Abstract

The development of large area cryogenic light detectors is one of the priorities of next generation bolometric experiments searching for neutrinoless double beta decay. The simultaneous read-out of the heat and light signals enables particle identification, provided that the energy resolution and the light collection are sufficiently high. CALDER (Cryogenic wide-Area Light Detectors with Excellent Resolution) is developing phonon-mediated silicon light detectors using KIDs, with the goal of sensing an area of 5 × 5 cm2 with a resolution of 20 eV RMS. We present the latest results obtained with aluminum chips and with newly developed multi-layer titanium–aluminum chips featuring a remarkable sensitivity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/960096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact