Rationale: During acute lung injury (ALI), mechanical ventilation can aggravate inflammation by promoting alveolar distension and cyclic recruitment-derecruitment. As an estimate of the intensity of inflammation,metabolic activity can bemeasured by positrone-mission tomography imaging of [18F]fluoro-2-deoxy-D-glucose. Objectives: To assess the relationship between gas volume changes induced by tidal ventilation and pulmonary metabolic activity in patients with ALI. Methods: In 13 mechanically ventilated patients with ALI and relatively high positive end-expiratory pressure, we performed a positron emission tomography scan of the chest and three computed tomography scans: at mean airway pressure, end-expiration, and end-inspiration. Metabolicactivitywasmeasuredfromthe[18F]fluoro-2-deoxy-D-glucose uptake rate. The computed tomography scans were used to classify lung regions as derecruited throughout the respiratory cycle, undergoing recruitment-derecruitment, and normally aerated. Measurements and Main Results: Metabolic activity of normally aerated lung was positively correlated both with plateau pressure, showing a pronounced increase above 26 to 27 cm H2O, and with regional VT normalized by end-expiratory lung gas volume. This relationship did not appear to be caused by a higher underlying parenchymal metabolic activity in patients with higher plateau pressure. Regions undergoing cyclic recruitment-derecruitment did not have higher metabolic activity than those collapsed throughout the respiratory cycle. Conclusions: In patients with ALI managed with relatively high end-expiratory pressure, metabolic activity of aerated regions was associated with both plateau pressure and regional VT normalized by end-expiratory lung gas volume, whereas no association was found between cyclic recruitment- derecruitment and increased metabolic activity. Copyright © 2011 American Thoracic Society.

Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury

Patroniti, Nicolò;
2011-01-01

Abstract

Rationale: During acute lung injury (ALI), mechanical ventilation can aggravate inflammation by promoting alveolar distension and cyclic recruitment-derecruitment. As an estimate of the intensity of inflammation,metabolic activity can bemeasured by positrone-mission tomography imaging of [18F]fluoro-2-deoxy-D-glucose. Objectives: To assess the relationship between gas volume changes induced by tidal ventilation and pulmonary metabolic activity in patients with ALI. Methods: In 13 mechanically ventilated patients with ALI and relatively high positive end-expiratory pressure, we performed a positron emission tomography scan of the chest and three computed tomography scans: at mean airway pressure, end-expiration, and end-inspiration. Metabolicactivitywasmeasuredfromthe[18F]fluoro-2-deoxy-D-glucose uptake rate. The computed tomography scans were used to classify lung regions as derecruited throughout the respiratory cycle, undergoing recruitment-derecruitment, and normally aerated. Measurements and Main Results: Metabolic activity of normally aerated lung was positively correlated both with plateau pressure, showing a pronounced increase above 26 to 27 cm H2O, and with regional VT normalized by end-expiratory lung gas volume. This relationship did not appear to be caused by a higher underlying parenchymal metabolic activity in patients with higher plateau pressure. Regions undergoing cyclic recruitment-derecruitment did not have higher metabolic activity than those collapsed throughout the respiratory cycle. Conclusions: In patients with ALI managed with relatively high end-expiratory pressure, metabolic activity of aerated regions was associated with both plateau pressure and regional VT normalized by end-expiratory lung gas volume, whereas no association was found between cyclic recruitment- derecruitment and increased metabolic activity. Copyright © 2011 American Thoracic Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/956139
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 177
  • ???jsp.display-item.citation.isi??? 169
social impact