A turbocharged diesel engine numerical model, suitable for real-time ship manoeuvre simulation, is presented in this paper. While some engine components (mainly the turbocharger, intercooler and manifolds) are modelled by a filling and emptying approach, the cylinder simulation is based on a set of five-dimensional numerical matrices (each matrix is generated by means of a more traditional thermodynamic model based on in-cylinder actual cycle). The new cylinder calculation approach strongly reduces the engine transient computation time, making it possible to transform the simulation model into a real-time executable application. As a case study, the simulation methodology is applied to a high speed four stroke turbocharged marine diesel engine, whose design and o design running data are available from the technical sheet. In order to verify the suitability of the proposed model in real-time simulation applications, a yacht propulsion plant simulator is developed. Numerical results in ship acceleration and deceleration manoeuvres are shown, reducing the simulation running time of 99% in comparison with the corresponding in-cylinder actual cycle engine model.

A Diesel Engine Modelling Approach for Ship Propulsion Real-Time Simulators

Marco Altosole;Ugo Campora;Massimo Figari;Michele Laviola;Michele Martelli
2019-01-01

Abstract

A turbocharged diesel engine numerical model, suitable for real-time ship manoeuvre simulation, is presented in this paper. While some engine components (mainly the turbocharger, intercooler and manifolds) are modelled by a filling and emptying approach, the cylinder simulation is based on a set of five-dimensional numerical matrices (each matrix is generated by means of a more traditional thermodynamic model based on in-cylinder actual cycle). The new cylinder calculation approach strongly reduces the engine transient computation time, making it possible to transform the simulation model into a real-time executable application. As a case study, the simulation methodology is applied to a high speed four stroke turbocharged marine diesel engine, whose design and o design running data are available from the technical sheet. In order to verify the suitability of the proposed model in real-time simulation applications, a yacht propulsion plant simulator is developed. Numerical results in ship acceleration and deceleration manoeuvres are shown, reducing the simulation running time of 99% in comparison with the corresponding in-cylinder actual cycle engine model.
File in questo prodotto:
File Dimensione Formato  
jmse-07-00138_Pub_compressed.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/955567
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 28
social impact