When a linear order has an order preserving surjection onto each of its suborders, we say that it is strongly surjective. We prove that the set of countable strongly surjective linear orders is a Ď2(II11)-complete set. Using hypotheses beyond ZFC, we prove the existence of uncountable strongly surjective orders.

Linear orders: when embeddability and epimorphism agree

CAMERLO, RICCARDO;
2019-01-01

Abstract

When a linear order has an order preserving surjection onto each of its suborders, we say that it is strongly surjective. We prove that the set of countable strongly surjective linear orders is a Ď2(II11)-complete set. Using hypotheses beyond ZFC, we prove the existence of uncountable strongly surjective orders.
File in questo prodotto:
File Dimensione Formato  
28-jml2019.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 458.95 kB
Formato Adobe PDF
458.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/948981
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact