Motivated by gauge theory, we develop a general framework for chain complex-valued algebraic quantum field theories. Building upon our recent operadic approach to this subject, we show that the category of such theories carries a canonical model structure and explain the important conceptual and also practical consequences of this result. As a concrete application, we provide a derived version of Fredenhagen’s universal algebra construction, which is relevant e.g. for the BRST/BV formalism. We further develop a homotopy theoretical generalization of algebraic quantum field theory with a particular focus on the homotopy-coherent Einstein causality axiom. We provide examples of such homotopy-coherent theories via (1) smooth normalized cochain algebras on ∞-stacks, and (2) fiber-wise groupoid cohomology of a category fibered in groupoids with coefficients in a strict quantum field theory.
Homotopy theory of algebraic quantum field theories
Marco Benini;
2019-01-01
Abstract
Motivated by gauge theory, we develop a general framework for chain complex-valued algebraic quantum field theories. Building upon our recent operadic approach to this subject, we show that the category of such theories carries a canonical model structure and explain the important conceptual and also practical consequences of this result. As a concrete application, we provide a derived version of Fredenhagen’s universal algebra construction, which is relevant e.g. for the BRST/BV formalism. We further develop a homotopy theoretical generalization of algebraic quantum field theory with a particular focus on the homotopy-coherent Einstein causality axiom. We provide examples of such homotopy-coherent theories via (1) smooth normalized cochain algebras on ∞-stacks, and (2) fiber-wise groupoid cohomology of a category fibered in groupoids with coefficients in a strict quantum field theory.File | Dimensione | Formato | |
---|---|---|---|
arXiv 1805.08795v2 [math-ph] 16012019.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Dimensione
497.25 kB
Formato
Adobe PDF
|
497.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.