Visuospatial working memory (VSWM) and intuitive geometry were examined in two groups aged 11-13, one with children displaying symptoms of nonverbal learning disability (NLD; n = 16), and the other, a control group without learning disabilities (n = 16). The two groups were matched for general verbal abilities, age, gender, and socioeconomic level. The children were presented with simple storage and complex-span tasks involving VSWM and with the intuitive geometry task devised by Dehaene, Izard, Pica, and Spelke (2006 ). Results revealed that the two groups differed in the intuitive geometry task. Differences were particularly evident in Euclidean geometry and in geometrical transformations. Moreover, the performance of NLD children was worse than controls to a larger extent in complex-span than in simple storage tasks, and VSWM differences were able to account for group differences in geometry. Finally, a discriminant function analysis confirmed the crucial role of complex-span tasks involving VSWM in distinguishing between the two groups. Results are discussed with reference to the relationship between VSWM and mathematics difficulties in nonverbal learning disabilities
Intuitive geometry and visuospatial working memory in children showing symptoms of nonverbal learning disabilities
Irene C. Mammarella;David Giofrè;Cesare Cornoldi
2013-01-01
Abstract
Visuospatial working memory (VSWM) and intuitive geometry were examined in two groups aged 11-13, one with children displaying symptoms of nonverbal learning disability (NLD; n = 16), and the other, a control group without learning disabilities (n = 16). The two groups were matched for general verbal abilities, age, gender, and socioeconomic level. The children were presented with simple storage and complex-span tasks involving VSWM and with the intuitive geometry task devised by Dehaene, Izard, Pica, and Spelke (2006 ). Results revealed that the two groups differed in the intuitive geometry task. Differences were particularly evident in Euclidean geometry and in geometrical transformations. Moreover, the performance of NLD children was worse than controls to a larger extent in complex-span than in simple storage tasks, and VSWM differences were able to account for group differences in geometry. Finally, a discriminant function analysis confirmed the crucial role of complex-span tasks involving VSWM in distinguishing between the two groups. Results are discussed with reference to the relationship between VSWM and mathematics difficulties in nonverbal learning disabilitiesI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.