It is now recognized that host microbiome, the community of microorganisms that colonize the animal body (e.g. microbiota) and their genomes, play an important role in the health status of all organisms, from nutrient processing to protection from disease. In particular, the complex, bilateral interactions between the host innate immune system and the microbiota are crucial in maintaining whole body homeostasis. The development of nanotechnology is raising concern on the potential impact of nanoparticles-NPs on human and environmental health. Titanium dioxide-nTiO 2 , one of the most widely NP in use, has been shown to affect the gut microbiota of mammals and fish, as well as to potentially alter microbial communities. In the marine bivalve Mytilus galloprovincialis, nTiO 2 has been previously shown to interact with hemolymph components, thus resulting in immunomodulation. However, no information is available on the possible impact of NPs on the microbiome of marine organisms. Bivalves host high microbial abundance and diversity, and alteration of their microbiota, in both tissues and hemolymph, in response to stressful conditions has been linked to a compromised health status and susceptibility to diseases. In this work, the effects of nTiO 2 exposure (100 μg/L, 4 days) on Mytilus hemolymph microbiota were investigated by 16S rRNA gene-based profiling. Immune parameters were also evaluated. Although hemolymph microbiota of control and nTiO 2 -treated mussels revealed a similar core composition, nTiO 2 exposure affected the abundance of different genera, with decreases in some (e.g. Shewanella, Kistimonas, Vibrio) and increases in others (e.g. Stenotrophomonas). The immunomodulatory effects of nTiO 2 were confirmed by the increase in the bactericidal activity of whole hemolymph. These represent the first data on the effects of NPs on the microbiome of marine invertebrates, and suggest that the shift in hemolymph microbiome composition induced by nTiO 2 may result from the interplay between the microbiota and the immune system.

Exposure to TiO 2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph

Vezzulli, Luigi;Canesi, Laura
2019-01-01

Abstract

It is now recognized that host microbiome, the community of microorganisms that colonize the animal body (e.g. microbiota) and their genomes, play an important role in the health status of all organisms, from nutrient processing to protection from disease. In particular, the complex, bilateral interactions between the host innate immune system and the microbiota are crucial in maintaining whole body homeostasis. The development of nanotechnology is raising concern on the potential impact of nanoparticles-NPs on human and environmental health. Titanium dioxide-nTiO 2 , one of the most widely NP in use, has been shown to affect the gut microbiota of mammals and fish, as well as to potentially alter microbial communities. In the marine bivalve Mytilus galloprovincialis, nTiO 2 has been previously shown to interact with hemolymph components, thus resulting in immunomodulation. However, no information is available on the possible impact of NPs on the microbiome of marine organisms. Bivalves host high microbial abundance and diversity, and alteration of their microbiota, in both tissues and hemolymph, in response to stressful conditions has been linked to a compromised health status and susceptibility to diseases. In this work, the effects of nTiO 2 exposure (100 μg/L, 4 days) on Mytilus hemolymph microbiota were investigated by 16S rRNA gene-based profiling. Immune parameters were also evaluated. Although hemolymph microbiota of control and nTiO 2 -treated mussels revealed a similar core composition, nTiO 2 exposure affected the abundance of different genera, with decreases in some (e.g. Shewanella, Kistimonas, Vibrio) and increases in others (e.g. Stenotrophomonas). The immunomodulatory effects of nTiO 2 were confirmed by the increase in the bactericidal activity of whole hemolymph. These represent the first data on the effects of NPs on the microbiome of marine invertebrates, and suggest that the shift in hemolymph microbiome composition induced by nTiO 2 may result from the interplay between the microbiota and the immune system.
File in questo prodotto:
File Dimensione Formato  
MANON CANESI Emolinfa microbiota.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in versione editoriale
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/944409
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 46
social impact