In this paper, we propose a novel method for the joint classification of both multidate and multiresolution remote sensing imagery, which represents an important and relatively unexplored classification problem. The proposed classifier is based on an explicit hierarchical graph-based model that is sufficiently flexible to address a coregistered time series of images collected at different spatial resolutions. Within this framework, a novel element of the proposed approach is the use of multiple quadtrees in cascade, each associated with the images available at each observation date in the considered time series. For each date, the input images are inserted in a hierarchical structure on the basis of their resolutions, whereas missing levels are filled in with wavelet transforms of the images embedded in finer-resolution levels. This approach is aimed at both exploiting multiscale information, which is known to play a crucial role in high-resolution image analysis, and supporting input images acquired at different resolutions in the input time series. The experimental results are shown for multitemporal and multiresolution optical data.

A New Cascade Model for the Hierarchical Joint Classification of Multitemporal and Multiresolution Remote Sensing Data

Hedhli, Ihsen;Moser, Gabriele;Zerubia, Josiane;Serpico, Sebastiano Bruno
2016-01-01

Abstract

In this paper, we propose a novel method for the joint classification of both multidate and multiresolution remote sensing imagery, which represents an important and relatively unexplored classification problem. The proposed classifier is based on an explicit hierarchical graph-based model that is sufficiently flexible to address a coregistered time series of images collected at different spatial resolutions. Within this framework, a novel element of the proposed approach is the use of multiple quadtrees in cascade, each associated with the images available at each observation date in the considered time series. For each date, the input images are inserted in a hierarchical structure on the basis of their resolutions, whereas missing levels are filled in with wavelet transforms of the images embedded in finer-resolution levels. This approach is aimed at both exploiting multiscale information, which is known to play a crucial role in high-resolution image analysis, and supporting input images acquired at different resolutions in the input time series. The experimental results are shown for multitemporal and multiresolution optical data.
File in questo prodotto:
File Dimensione Formato  
16.tgrs.ihsen.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 3.16 MB
Formato Adobe PDF
3.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/938959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact