The 18O(p,α)15N reaction affects the synthesis of 15N, 18O and 19F isotopes, whose abundances can be used to probe the nucleosynthesis and mixing processes occurring deep inside asymptotic giant branch (AGB) stars. We performed a low-background direct measurement of the 18O(p,α)15N reaction cross-section at the Laboratory for Underground Nuclear Astrophysics (LUNA) from center of mass energy Ec.m.=340keV down to Ec.m.=55keV, the lowest energy measured to date corresponding to a cross-section of less than 1 picobarn/sr. The strength of a key resonance at center of mass energy Er=90keV was found to be a factor of 10 higher than previously reported. A multi-channel R-matrix analysis of our and other data available in the literature was performed. Over a wide temperature range, T=0.01–1.00GK, our new astrophysical rate is both more accurate and precise than recent evaluations. Stronger constraints can now be placed on the physical processes controlling nucleosynthesis in AGB stars with interesting consequences on the abundance of 18O in these stars and in stardust grains, specifically on the production sites of oxygen-rich Group II grains.

Improved astrophysical rate for the 18O(p,α)15N reaction by underground measurements

F. Cavanna;P. Corvisiero;P. Prati;
2019-01-01

Abstract

The 18O(p,α)15N reaction affects the synthesis of 15N, 18O and 19F isotopes, whose abundances can be used to probe the nucleosynthesis and mixing processes occurring deep inside asymptotic giant branch (AGB) stars. We performed a low-background direct measurement of the 18O(p,α)15N reaction cross-section at the Laboratory for Underground Nuclear Astrophysics (LUNA) from center of mass energy Ec.m.=340keV down to Ec.m.=55keV, the lowest energy measured to date corresponding to a cross-section of less than 1 picobarn/sr. The strength of a key resonance at center of mass energy Er=90keV was found to be a factor of 10 higher than previously reported. A multi-channel R-matrix analysis of our and other data available in the literature was performed. Over a wide temperature range, T=0.01–1.00GK, our new astrophysical rate is both more accurate and precise than recent evaluations. Stronger constraints can now be placed on the physical processes controlling nucleosynthesis in AGB stars with interesting consequences on the abundance of 18O in these stars and in stardust grains, specifically on the production sites of oxygen-rich Group II grains.
File in questo prodotto:
File Dimensione Formato  
Bruno PLB2019 18(p,a).pdf

accesso aperto

Descrizione: articolo
Tipologia: Documento in versione editoriale
Dimensione 478.64 kB
Formato Adobe PDF
478.64 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/937692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact