We propose an inertial forward–backward splitting algorithm to compute a zero of a sum of two monotone operators allowing for stochastic errors in the computation of the operators. More precisely, we establish almost sure convergence in real Hilbert spaces of the sequence of iterates to an optimal solution. Then, based on this analysis, we introduce two new classes of stochastic inertial primal–dual splitting methods for solving structured systems of composite monotone inclusions and prove their convergence. Our results extend to the stochastic and inertial setting various types of structured monotone inclusion problems and corresponding algorithmic solutions. Application to minimization problems is discussed.
A stochastic inertial forward–backward splitting algorithm for multivariate monotone inclusions
Rosasco, Lorenzo;Villa, Silvia;
2016-01-01
Abstract
We propose an inertial forward–backward splitting algorithm to compute a zero of a sum of two monotone operators allowing for stochastic errors in the computation of the operators. More precisely, we establish almost sure convergence in real Hilbert spaces of the sequence of iterates to an optimal solution. Then, based on this analysis, we introduce two new classes of stochastic inertial primal–dual splitting methods for solving structured systems of composite monotone inclusions and prove their convergence. Our results extend to the stochastic and inertial setting various types of structured monotone inclusion problems and corresponding algorithmic solutions. Application to minimization problems is discussed.File | Dimensione | Formato | |
---|---|---|---|
27_A stochastic inertial forward backward splitting algorithm for multivariate monotone inclusions.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
438.68 kB
Formato
Adobe PDF
|
438.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.