We prove an explicit formula, analogous to the classical explicit formula for $psi(x)$, for the Cesaro-Riesz mean of any order $k>0$ of the number of representations of $n$ as a sum of two primes. Our approach is based on a double Mellin transform and the analytic continuation of certain functions arising therein.
Explicit formulae for averages of Goldbach representations
PERELLI, A.
2019-01-01
Abstract
We prove an explicit formula, analogous to the classical explicit formula for $psi(x)$, for the Cesaro-Riesz mean of any order $k>0$ of the number of representations of $n$ as a sum of two primes. Our approach is based on a double Mellin transform and the analytic continuation of certain functions arising therein.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
124-2019:B-K-P:TAMS.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
270.17 kB
Formato
Adobe PDF
|
270.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.