This paper reports a review of an environmentally clean and efficient source of energy such as solid oxide fuel cell hybrid systems. Due to climate concerns, most nations are seeking alternative means of generating energy from a clean, efficient and environmental-friendly method. However, this has proven a big hurdle for both academic and industry researchers over many years. Currently, practical and technically feasible solution can be obtained via an integration of a microturbine and a fuel cell (hybrid systems). Combining the two distinct systems in a hybrid arrangement the efficiency of the microturbine increases from 25 to 30% to the 60-65% range. Hence, this paper outlines an engineering power generation solution towards the acute global population growth, the growing need, environmental concerns, intelligent use of energy with attendant environmental and hybrid system layouts concerning arising problems and tentative proposed solutions. Furthermore, advantages of a solid oxide fuel cell hybrid systems with respect to the other technologies are identified and discussed rationally. Special attention is devoted to modelling with software and emulator rigs and system prototypes. The paper also reviews the limitations and the benefits of these hybrid systems in relationship with energy, environment and sustainable development. Few potential applications, as long-term potential actions for sustainable development, and the future of such devices are further discussed.
Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy
M. L. Ferrari;A. F. Massardo
2019-01-01
Abstract
This paper reports a review of an environmentally clean and efficient source of energy such as solid oxide fuel cell hybrid systems. Due to climate concerns, most nations are seeking alternative means of generating energy from a clean, efficient and environmental-friendly method. However, this has proven a big hurdle for both academic and industry researchers over many years. Currently, practical and technically feasible solution can be obtained via an integration of a microturbine and a fuel cell (hybrid systems). Combining the two distinct systems in a hybrid arrangement the efficiency of the microturbine increases from 25 to 30% to the 60-65% range. Hence, this paper outlines an engineering power generation solution towards the acute global population growth, the growing need, environmental concerns, intelligent use of energy with attendant environmental and hybrid system layouts concerning arising problems and tentative proposed solutions. Furthermore, advantages of a solid oxide fuel cell hybrid systems with respect to the other technologies are identified and discussed rationally. Special attention is devoted to modelling with software and emulator rigs and system prototypes. The paper also reviews the limitations and the benefits of these hybrid systems in relationship with energy, environment and sustainable development. Few potential applications, as long-term potential actions for sustainable development, and the future of such devices are further discussed.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0360544218323028-main.pdf
accesso aperto
Tipologia:
Documento in Post-print
Dimensione
917.85 kB
Formato
Adobe PDF
|
917.85 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.