Rare-earth (RE)-doped ceria systems, in particular when RE ≡ Nd, Sm, or Gd, are well-known to be characterized by high values of ionic conductivity in the intermediate temperature range, which, in principle, makes them ideal solid electrolytes in solid oxide fuel and electrolysis cells. Defect chemistry turns out to be a pivotal issue in this framework because ionic conductivity is driven by the ability of oxygen vacancies to move through the lattice, and any form of defect clustering tends to depress the efficiency of oxygen transport. In this viewpoint, not only are factors at the average scale assessed, such as the compositional extent of the CeO2-like solid solution, but also the occurrence of local inhomogeneities due to vacancy-dopant association is discussed in correlation with its central role in hindering the migration of vacancies. The relationship between the stability of the hybrid phase and the RE3+ ionic size is presented, and the highly complementary role of Raman spectroscopy toward X-ray diffraction is described in detail. The key points of the whole discussion are finally used to identify the most relevant structure-related parameters affecting ionic conductivity in the studied material.

Rare-Earth-Doped Ceria Systems and Their Performance as Solid Electrolytes: A Puzzling Tangle of Structural Issues at the Average and Local Scale

Artini, Cristina
2018-01-01

Abstract

Rare-earth (RE)-doped ceria systems, in particular when RE ≡ Nd, Sm, or Gd, are well-known to be characterized by high values of ionic conductivity in the intermediate temperature range, which, in principle, makes them ideal solid electrolytes in solid oxide fuel and electrolysis cells. Defect chemistry turns out to be a pivotal issue in this framework because ionic conductivity is driven by the ability of oxygen vacancies to move through the lattice, and any form of defect clustering tends to depress the efficiency of oxygen transport. In this viewpoint, not only are factors at the average scale assessed, such as the compositional extent of the CeO2-like solid solution, but also the occurrence of local inhomogeneities due to vacancy-dopant association is discussed in correlation with its central role in hindering the migration of vacancies. The relationship between the stability of the hybrid phase and the RE3+ ionic size is presented, and the highly complementary role of Raman spectroscopy toward X-ray diffraction is described in detail. The key points of the whole discussion are finally used to identify the most relevant structure-related parameters affecting ionic conductivity in the studied material.
File in questo prodotto:
File Dimensione Formato  
55_Inorg. Chem. 57 (2018) 13047-13062.pdf

accesso chiuso

Tipologia: Documento in versione editoriale
Dimensione 3.21 MB
Formato Adobe PDF
3.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/930763
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 49
social impact