The paper presents a path planning algorithm for ship guidance in presence of obstacles, based on an ad hoc modified version of the Rapidly-exploring Random Tree (RRT*) algorithm. The proposed approach is designed to be part of a decision support system for the bridge operators, in order to enhance traditional navigation. Focusing on the maritime field, a review of the scientific literature dealing with motion planning is presented, showing potential benefits and weaknesses of the different approaches. Among the several methods, details on RRT and RRT* algorithms are given. The ship path planning problem is introduced and discussed, formulating suitable cost functions and taking into account both topological and kinematic constraints. Eventually, an existing time domain ship simulator is used to test the effectiveness of the proposed algorithm over a number of realistic operation scenarios. The obtained results are presented and critically discussed.

A random sampling based algorithm for ship path planning with obstacles

Raphael Zaccone;Michele Martelli
2018-01-01

Abstract

The paper presents a path planning algorithm for ship guidance in presence of obstacles, based on an ad hoc modified version of the Rapidly-exploring Random Tree (RRT*) algorithm. The proposed approach is designed to be part of a decision support system for the bridge operators, in order to enhance traditional navigation. Focusing on the maritime field, a review of the scientific literature dealing with motion planning is presented, showing potential benefits and weaknesses of the different approaches. Among the several methods, details on RRT and RRT* algorithms are given. The ship path planning problem is introduced and discussed, formulating suitable cost functions and taking into account both topological and kinematic constraints. Eventually, an existing time domain ship simulator is used to test the effectiveness of the proposed algorithm over a number of realistic operation scenarios. The obtained results are presented and critically discussed.
File in questo prodotto:
File Dimensione Formato  
INEC_2018_Paper_068_Martelli_SDG_FINAL.pdf

accesso chiuso

Tipologia: Documento in Post-print
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/929553
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact