Molecular Dynamics (MD) and Monte Carlo (MC) simulations of crystals can help in interpretation of experimental X-ray crystallography data. Particularly, they can be useful for understanding how various crystallization techniques affect protein conformational plasticity within the crystal lattice and the stability of biomolecular crystals. The latter has become especially important since the modern and extremely intense X-ray radiation sources (such as free electron lasers, FELs) appeared recently. In the present study we were able to show by means of computer simulations that the lysozyme crystals obtained using the Langmuir-Blodgett technique have an advantage over the classical ones (“Hanging Drop”) in terms of their thermal stability as well as their stability against the radiation damage. We also demonstrate an important role of crystal water dynamics for stability of protein crystals.

Stability and Radiation Damage of Protein Crystals as Studied by Means of Molecular Dynamics and Monte Carlo Simulation

Pechkova, Eugenia;Nicolini, Claudio
2017

Abstract

Molecular Dynamics (MD) and Monte Carlo (MC) simulations of crystals can help in interpretation of experimental X-ray crystallography data. Particularly, they can be useful for understanding how various crystallization techniques affect protein conformational plasticity within the crystal lattice and the stability of biomolecular crystals. The latter has become especially important since the modern and extremely intense X-ray radiation sources (such as free electron lasers, FELs) appeared recently. In the present study we were able to show by means of computer simulations that the lysozyme crystals obtained using the Langmuir-Blodgett technique have an advantage over the classical ones (“Hanging Drop”) in terms of their thermal stability as well as their stability against the radiation damage. We also demonstrate an important role of crystal water dynamics for stability of protein crystals.
File in questo prodotto:
File Dimensione Formato  
2017Orekhov NWJ special issue 1.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 501.75 kB
Formato Adobe PDF
501.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11567/925426
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact