The limited treatment options against influenza virus along with the growing public health concerns regarding the continuous emergence of drug-resistant viruses make essential the development of new anti-flu agents with novel mechanisms of action. One of the most attractive targets is the interaction between two subunits of the RNA-dependent RNA polymerase, PA and PB1. Herein we report the rational design of hybrid compounds starting from a 3-cyano-4,6-diphenylpyridine scaffold recently identified as disruptor of PA-PB1 interactions. Guided by the previously reported SAR data, a library of amino acid derivatives was synthesized. The biological evaluation led to the identification of new PA-PB1 inhibitors, that do not show appreciable toxicity. Molecular modeling shed further lights on the inhibition mechanism of these compounds.
Synthesis and biological evaluation of a library of hybrid derivatives as inhibitors of influenza virus PA-PB1 interaction
Giacchello, Ilaria;Musumeci, Francesca;Grossi, Giancarlo;Schenone, Silvia;
2018-01-01
Abstract
The limited treatment options against influenza virus along with the growing public health concerns regarding the continuous emergence of drug-resistant viruses make essential the development of new anti-flu agents with novel mechanisms of action. One of the most attractive targets is the interaction between two subunits of the RNA-dependent RNA polymerase, PA and PB1. Herein we report the rational design of hybrid compounds starting from a 3-cyano-4,6-diphenylpyridine scaffold recently identified as disruptor of PA-PB1 interactions. Guided by the previously reported SAR data, a library of amino acid derivatives was synthesized. The biological evaluation led to the identification of new PA-PB1 inhibitors, that do not show appreciable toxicity. Molecular modeling shed further lights on the inhibition mechanism of these compounds.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.