The added resistance of a catamaran advancing in waves is investigated in the framework of a non-viscous potential theory. A linear Boundary Element Method (BEM) is used for the first order seakeeping prediction and the mean longitudinal component of the second-order steady-state force is computed by using a near-field method. Both methods are briefly presented and preliminary validations on both a mono-hull and a catamaran are shown. A systematic analysis of the added resistance of the so-called DUT catamaran is presented highlighting the effects of the advancing speed and those of the ship-wave heading angle.
A STUDY ON THE ADDED RESISTANCE PERFORMANCE OF CATAMARANS IN WAVES
Emanuela Ageno;Luca Bonfiglio;Dario Bruzzone;Giuliano Vernengo;Diego Villa
2018-01-01
Abstract
The added resistance of a catamaran advancing in waves is investigated in the framework of a non-viscous potential theory. A linear Boundary Element Method (BEM) is used for the first order seakeeping prediction and the mean longitudinal component of the second-order steady-state force is computed by using a near-field method. Both methods are briefly presented and preliminary validations on both a mono-hull and a catamaran are shown. A systematic analysis of the added resistance of the so-called DUT catamaran is presented highlighting the effects of the advancing speed and those of the ship-wave heading angle.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
OMAE2018-Catamarani.pdf
accesso chiuso
Tipologia:
Documento in versione editoriale
Dimensione
3.53 MB
Formato
Adobe PDF
|
3.53 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.