Selected members of the large rolipram-related GEBR family of phosphodiesterase-4 (PDE4) inhibitors have been shown to facilitate long term potentiation (LTP) and improve memory functions without causing emetic-like behavior in rodents. Despite their micromolar-range binding affinities and their promising pharmacological and toxicological profiles, little if any structure-activity relationship studies have so far been carried out in order to elucidate the molecular bases of their action. Here, we report the crystal structure of a number of GEBR library compounds in complex with the catalytic domain of PDE4D as well as their inhibitory profiles for both the long PDE4D3 isoform and the catalytic domain alone. Furthermore, we assessed the stability of the observed ligand conformations in the context of the intact enzyme using molecular dynamics simulations. The longer and more flexible ligands appear to be capable of forming contacts with the regulatory portion of the enzyme, thus possibly allowing some degree of selectivity between the different PDE4 isoforms.

Molecular bases of PDE4D inhibition by GEBR-library compounds

Alfei, Silvana;Brullo, Chiara;Bruno, Olga;
2018-01-01

Abstract

Selected members of the large rolipram-related GEBR family of phosphodiesterase-4 (PDE4) inhibitors have been shown to facilitate long term potentiation (LTP) and improve memory functions without causing emetic-like behavior in rodents. Despite their micromolar-range binding affinities and their promising pharmacological and toxicological profiles, little if any structure-activity relationship studies have so far been carried out in order to elucidate the molecular bases of their action. Here, we report the crystal structure of a number of GEBR library compounds in complex with the catalytic domain of PDE4D as well as their inhibitory profiles for both the long PDE4D3 isoform and the catalytic domain alone. Furthermore, we assessed the stability of the observed ligand conformations in the context of the intact enzyme using molecular dynamics simulations. The longer and more flexible ligands appear to be capable of forming contacts with the regulatory portion of the enzyme, thus possibly allowing some degree of selectivity between the different PDE4 isoforms.
File in questo prodotto:
File Dimensione Formato  
Biochemistry_article.pdf

accesso chiuso

Descrizione: Articolo completo
Tipologia: Documento in versione editoriale
Dimensione 7.57 MB
Formato Adobe PDF
7.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
SIfinali.pdf

accesso chiuso

Descrizione: Supporting Information
Tipologia: Altro materiale allegato
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/909913
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact