Induction motors are fundamental components of several modern automation system, and they are one of the central pivot of the developing e-mobility era. The most vulnerable parts of an induction motor are the bearings, the stator winding and the rotor bars. Consequently, monitoring and maintaining them during operations is vital. In this work, authors propose an Induction Motors bearings monitoring tool which leverages on stator currents signals processed with a Deep Learning architecture. Differently from the state-of-the-art approaches which exploit vibration signals, collected by easily damageable and intrusive vibration probes, the stator currents signals are already commonly available, or easily and unintrusively collectable. Moreover, instead of using now-classical data-driven models, authors exploit a Deep Learning architecture able to extract from the stator current signal a compact and expressive representation of the bearings state, ultimately providing a bearing fault detection system. In order to estimate the effectiveness of the proposal, authors collected a series of data from an inverter-fed motor mounting different artificially damaged bearings. Results show that the proposed approach provides a promising and effective yet simple bearing fault detection system.

Unintrusive Monitoring of Induction Motors Bearings via Deep Learning on Stator Currents

Cipollini Francesca;Oneto Luca;Coraddu Andrea;Savio Stefano;Anguita Davide
2018-01-01

Abstract

Induction motors are fundamental components of several modern automation system, and they are one of the central pivot of the developing e-mobility era. The most vulnerable parts of an induction motor are the bearings, the stator winding and the rotor bars. Consequently, monitoring and maintaining them during operations is vital. In this work, authors propose an Induction Motors bearings monitoring tool which leverages on stator currents signals processed with a Deep Learning architecture. Differently from the state-of-the-art approaches which exploit vibration signals, collected by easily damageable and intrusive vibration probes, the stator currents signals are already commonly available, or easily and unintrusively collectable. Moreover, instead of using now-classical data-driven models, authors exploit a Deep Learning architecture able to extract from the stator current signal a compact and expressive representation of the bearings state, ultimately providing a bearing fault detection system. In order to estimate the effectiveness of the proposal, authors collected a series of data from an inverter-fed motor mounting different artificially damaged bearings. Results show that the proposed approach provides a promising and effective yet simple bearing fault detection system.
File in questo prodotto:
File Dimensione Formato  
C055.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/905091
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact