The component mode synthesis (CMS) based on the Craig-Bampton (CB) method has two strong limitations that appear when the number of the interface degrees-of-freedom (DOFs) is large. First, the reduced-order model (ROM) obtained is overweighed by many unnecessary DOF. Second, the reduction step may become extremely time consuming. Several interface reduction (IR) techniques addressed successfully the former problem, while the latter remains open. In this paper, we tackle this latter problem through a simple IR technique based on an a-priory choice of the interface modes. An efficient representation of the interface displacement field is achieved adopting a set of orthogonal basis functions determined by the interface geometry. The proposed method is compared with other existing IR methods on a case study regarding a rotor blade of an axial compressor.

Interface Reduction in Craig-Bampton Component Mode Synthesis by Orthogonal Polynomial Series

Carassale, Luigi;Maurici, Mirko
2018-01-01

Abstract

The component mode synthesis (CMS) based on the Craig-Bampton (CB) method has two strong limitations that appear when the number of the interface degrees-of-freedom (DOFs) is large. First, the reduced-order model (ROM) obtained is overweighed by many unnecessary DOF. Second, the reduction step may become extremely time consuming. Several interface reduction (IR) techniques addressed successfully the former problem, while the latter remains open. In this paper, we tackle this latter problem through a simple IR technique based on an a-priory choice of the interface modes. An efficient representation of the interface displacement field is achieved adopting a set of orthogonal basis functions determined by the interface geometry. The proposed method is compared with other existing IR methods on a case study regarding a rotor blade of an axial compressor.
File in questo prodotto:
File Dimensione Formato  
2018 Carassale & Maurici.pdf

accesso chiuso

Descrizione: Articolo
Tipologia: Documento in versione editoriale
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/898641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 15
social impact