We formulate a precise conjecture that, if true, extends the converse theorem of Hecke without requiring hypotheses on twists by Dirichlet characters or an Euler product. The main idea is to linearize the Euler product, replacing it by twists by Ramanujan sums. We provide evidence for the conjecture, including proofs of some special cases and under various additional hypotheses.

A conjectural extension of Hecke’s converse theorem

Bettin, Sandro;Conrey, Brian;Molteni, Giuseppe;Oliver, Thomas;
2018-01-01

Abstract

We formulate a precise conjecture that, if true, extends the converse theorem of Hecke without requiring hypotheses on twists by Dirichlet characters or an Euler product. The main idea is to linearize the Euler product, replacing it by twists by Ramanujan sums. We provide evidence for the conjecture, including proofs of some special cases and under various additional hypotheses.
File in questo prodotto:
File Dimensione Formato  
ramanujan42.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Documento in versione editoriale
Dimensione 694.78 kB
Formato Adobe PDF
694.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/896404
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact