Metformin is an antidiabetic drug which possesses antiproliferative activity in cancer cells when administered at high doses, due to its unfavorable pharmacokinetics. The aim of this work was to develop a pharmacological tool for the release of metformin in proximity of the tumor, allowing high local concentrations, and to demonstrate the in vivo antitumor efficacy after a prolonged metformin exposition. A 1.2% w/w metformin thermoresponsive parenteral formulation based on poloxamers P407 and P124, injectable at room temperature and undergoing a sol-gel transition at body temperature, has been developed and optimized for rheological, thermal and release control properties; the formulation is easily scalable, and proved to be stable during a 1-month storage at 5 °C. Using NOD/SCID mice pseudo-orthotopically grafted with MDA-MB-231/luc+ human breast cancer cells, we report that multiple administrations of 100 mg of the optimized metformin formulation close to the tumor site cause tissue accumulation of the drug at levels significantly higher than those observed in plasma, and enough to exert antiproliferative and pro-apoptotic activities. Our results demonstrate that this formulation is endowed with good stability, tolerability, thermal and rheological properties, representing a novel tool to be pursued in further investigations for adjuvant cancer treatment.

Development of an Injectable Slow-Release Metformin Formulation and Evaluation of Its Potential Antitumor Effects

Baldassari S.;Solari A.;Zuccari G.;Drava G.;Pastorino S.;Fucile C.;Marini V.;Pattarozzi A.;Ferrari A.;Mattioli F.;Barbieri F.;Caviglioli G.;Florio T.
2018-01-01

Abstract

Metformin is an antidiabetic drug which possesses antiproliferative activity in cancer cells when administered at high doses, due to its unfavorable pharmacokinetics. The aim of this work was to develop a pharmacological tool for the release of metformin in proximity of the tumor, allowing high local concentrations, and to demonstrate the in vivo antitumor efficacy after a prolonged metformin exposition. A 1.2% w/w metformin thermoresponsive parenteral formulation based on poloxamers P407 and P124, injectable at room temperature and undergoing a sol-gel transition at body temperature, has been developed and optimized for rheological, thermal and release control properties; the formulation is easily scalable, and proved to be stable during a 1-month storage at 5 °C. Using NOD/SCID mice pseudo-orthotopically grafted with MDA-MB-231/luc+ human breast cancer cells, we report that multiple administrations of 100 mg of the optimized metformin formulation close to the tumor site cause tissue accumulation of the drug at levels significantly higher than those observed in plasma, and enough to exert antiproliferative and pro-apoptotic activities. Our results demonstrate that this formulation is endowed with good stability, tolerability, thermal and rheological properties, representing a novel tool to be pursued in further investigations for adjuvant cancer treatment.
File in questo prodotto:
File Dimensione Formato  
Baldassari_et_al-2018-Scientific_Reports.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/894611
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 23
social impact