Stimulated emission depletion (STED) microscopy provides subdiffraction resolution while preserving useful aspects of fluorescence microscopy, such as optical sectioning, and molecular specificity and sensitivity. However, sophisticated microscopy architectures and high illumination intensities have limited STED microscopy's widespread use in the past. Here we summarize the progress that is mitigating these problems and giving substantial momentum to STED microscopy applications. We discuss the future of this method in regard to spatiotemporal limits, live-cell imaging and combination with spectroscopy. Advances in these areas may elevate STED microscopy to a standard method for imaging in the life sciences.

STED super-resolved microscopy

Diaspro, Alberto
2018-01-01

Abstract

Stimulated emission depletion (STED) microscopy provides subdiffraction resolution while preserving useful aspects of fluorescence microscopy, such as optical sectioning, and molecular specificity and sensitivity. However, sophisticated microscopy architectures and high illumination intensities have limited STED microscopy's widespread use in the past. Here we summarize the progress that is mitigating these problems and giving substantial momentum to STED microscopy applications. We discuss the future of this method in regard to spatiotemporal limits, live-cell imaging and combination with spectroscopy. Advances in these areas may elevate STED microscopy to a standard method for imaging in the life sciences.
File in questo prodotto:
File Dimensione Formato  
11567-893207_merged_1504707495.pdf

accesso aperto

Tipologia: Documento in Pre-print
Dimensione 9.43 MB
Formato Adobe PDF
9.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/893207
Citazioni
  • ???jsp.display-item.citation.pmc??? 82
  • Scopus 455
  • ???jsp.display-item.citation.isi??? 417
social impact