CERN has recently started a design study for a possible next-generation high-energy hadron- hadron collider (Future Circular Collider-FCC-hh). The FCC-hh study calls for an unprecedented center-of-mass collision energy of 100 TeV, achievable by colliding counter-rotating proton beams with an energy of 50 TeV steered in a 100 km circumference tunnel by superconducting magnets which produce a dipole field of 16 T. The beams emit synchrotron radiation at high power levels, which, to optimize cryogenic efficiency, is absorbed by a beam-facing screen, coated with copper, and held at 50K in the current design. The surface impedance of this screen has a strong impact on beam stability, and copper at 50 K allows for a limited beam stability margin only. This motivates the exploration of whether high-temperature superconductors (HTS), the only known materials possibly having a surface impedance lower than copper under the required operating conditions, would represent a viable alternative. This paper summarizes the FCC-hh requirements and focuses on identifying the best possible HTS material for this purpose. It reviews in particular the properties of Tl-based HTS, and discusses the consequent motivation for developing a deposition process for such compounds, which should be scalable to the size of the FCC components.

Thallium-based high-temperature superconductors for beam impedance mitigation in the Future Circular Collider

Bellingeri, E.;Putti, M.;
2017-01-01

Abstract

CERN has recently started a design study for a possible next-generation high-energy hadron- hadron collider (Future Circular Collider-FCC-hh). The FCC-hh study calls for an unprecedented center-of-mass collision energy of 100 TeV, achievable by colliding counter-rotating proton beams with an energy of 50 TeV steered in a 100 km circumference tunnel by superconducting magnets which produce a dipole field of 16 T. The beams emit synchrotron radiation at high power levels, which, to optimize cryogenic efficiency, is absorbed by a beam-facing screen, coated with copper, and held at 50K in the current design. The surface impedance of this screen has a strong impact on beam stability, and copper at 50 K allows for a limited beam stability margin only. This motivates the exploration of whether high-temperature superconductors (HTS), the only known materials possibly having a surface impedance lower than copper under the required operating conditions, would represent a viable alternative. This paper summarizes the FCC-hh requirements and focuses on identifying the best possible HTS material for this purpose. It reviews in particular the properties of Tl-based HTS, and discusses the consequent motivation for developing a deposition process for such compounds, which should be scalable to the size of the FCC components.
File in questo prodotto:
File Dimensione Formato  
manuscript.pdf

accesso aperto

Tipologia: Documento in Pre-print
Dimensione 793.56 kB
Formato Adobe PDF
793.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/893173
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact